Iterative Correctness

2025-07-09

Recap

e Correctness: Precondition = Postcondition

* For recursive algorithms, proof of correctness is done by induction on the
Input size.

o Karatsuba’s Algorithm for multiplication.

Iterative Algorithms

1 =0

while 1 < N:
some more code here...
1 += 1

~ W N =

e Convention: After the kth iteration
means just before the loop
condition Is evaluated for the

k+ 1 time

o After the kth iteration is the same
as before the k + 1th iteration

Example

More multiplication!

e Input: (x, y)
e Precondition:z,y € N
e Postcondition: return 2.

1 def mult(x, y):

2 1 =20

3 total = 0

4 while i < x:

5 total = total + vy
6 1 =1+ 1

Subscripts

o If X iIs some variable in the function, use x; to denote the value of a variable
after iteration 1

General Strategy

Define a loop invariant - some property that is true at the end of every iteration. Call the
property P(i). l.e., P(i) holds if the property is true after iteration i. WTS Vi € N. P(i)

Prove the following;:

* Initialization. Show that the loop invariant is true at the start of the loop if the
precondition holds.

 Maintenance. Show that if the loop invariant is true at the start of any iteration, it is
also true at the start of the next iteration.

 Termination. Show that the loop terminates and that when the loop terminates, the
loop Invariant applied to the last iteration implies the postcondition.

Runtime

def mult(x, y):
1 =0
total = 0
while i < x:
total = total + vy
1 =1+ 1

SO U B W IN K-

For Loops < While Loops

1 for i in range(N):
2 # some code here...

IS equivalent to

1 =0

while i < N:
some code here...
1 += 1

~ W N =

Proving Termination

* Usually, a consequence of the loop invariant.

* The loop invariant implies the loop condition is true after iterations

0,1,....N—1

» The loop invariant implies the loop condition is false after iteration /V, so the
loop exits after the Nth iteration.

Mystery Algorithm

Precondition: z,y € N,y > 0.

def mystery(x, y):
val = 0
c =0
while val < x:
val = val + vy
c=c¢Cc + 1
return c

~N O 0 B W N -

Convention

If the predicate P(n) has multiple parts like
a. ...

b. ...

Use P(n).a, P(n).b,... to refer to specific parts of the predicate.

Variations

* One loop after another
* Prove the correctness of each loop in sequence
 Nested loops

* “Inside out”. Decompose (or imagine) the inner loop as a separate function.
Prove the correctness of that function as a lemma and then prove the
correctness of the outer loop. We’ll see some examples in the tutorial.

Another way to prove termination

Descending Sequence

* Define a descending sequence of natural numbers indexed by the iteration
number. |.e. Cll > Clz > 613 > ...

e Then, A = {a,,a,, ..., } mustbe a finite set; otherwise, it would be a set of

natural numbers with no minimal element, contradicting the Well-Ordering
Principle.

Example.

def mystery(x, y):
val = 0
c =0
while val < x:
val = val + vy
c=c¢c + 1
return cC

~N OO O B W N -

Proofs of Termination

 Most of the time, the LI will imply termination, saving you from having to do
another induction proof. | prefer this method.

» However, it Is easier to define a descending sequence of natural numbers In
some cases - we’ll see some examples in the tutorial.

1
2
3
4
5
6
7/
3
9

10
11
12
13

Merge

def merge(x,
L = []

while len(x) > 0 or len(y) > 0:
if len(x) > 0 and len(y) > O:

elif

else

return 1

y):

if y[0] <=

L.append(y.pop(0)) # 1.

else:

L.append(x.pop(0)) # 2.

len(x) ==
L.append(y

L.append(x

x[0]:

0:

.pop(0Q)) # 3.

.pop(0Q)) # 4.

* Inputs: x, y are lists of sortable elements.

* Precondition: x, y are sorted lists

* Postcondition: returns a sorted list
consisting of all the elements in x and y

Counters

 If [€ List| X], then Counter(/) is a mapping of elements of [to the number
of times they appear.

« E.g. Counter([1,2,3,2,1,1,14H=1{1:4,2:2,3:1,4:1}

» You can think of Counter(/) as a function from X — N

O 00 NN O U &H W IN K-

Y
W N R S

Merge

def merge(x, y):
L= []
while len(x) > 0 or len(y) > 0:
if len(x) > 0 and len(y) > O:
if y[0] <= x[0]:

L.append(y.pop(@)) # 1.

else:

L.append(x.pop(@)) # 2.

elif len(x) == 0:
L.append(y.pop(0)) # 3.
else:
l.append(x.pop(0)) # 4.
return 1

* Inputs: x, y are lists of sortable elements.

* Precondition: x, y are sorted lists

e Postcondition:

O 00O NN O U B WIN -

B S
N R o

13

def merge(x,
L= []

while le

if 1

elif

y):

n(x) > 0 or len(y) > 0:
en(x) > 0 and len(y) > 0:
if y[0] <= x[0]:
L.append(y.pop(@)) # 1.
else:
L.append(x.pop(0)) # 2.
len(x) ==
L.append(y.pop(@)) # 3.

else:

return L

L.append(x.pop(0)) # 4.

Takeaways

* |t’'s normal for the loop invariant to have many parts!

* |f you’re trying to prove a loop invariant and you get stuck and wish some
other property holds, try adding what you need as part of the loop invariant.

 For example, it’'s common for part 4 of a loop invariant to imply part 1 of the
loop Invariant.

Summary: Correctness

* |f the algorithm is recursive, prove correctness directly by induction on the
size of the input.

* For algorithms with loops, prove the correctness of the loop by defining a
Loop Invariant, proving the Loop Invariant, and showing that the Loop
Invariant holds at the end of the algorithm implies the postcondition.

