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Iterative Correctness



Recap

• Correctness: Precondition  Postcondition


• For recursive algorithms, proof of correctness is done by induction on the 
input size.


• Karatsuba’s Algorithm for multiplication.


•  time! 

⟹

nlog2(3) ≤ n1.59



Iterative Algorithms

• Convention: After the th iteration 
means just before the loop 
condition is evaluated for the 

 time


• After the th iteration is the same 
as before the th iteration
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Example
More multiplication!



Subscripts

• If  is some variable in the function, use  to denote the value of a variable 
after iteration 


•

x xi
i



General Strategy

Define a loop invariant - some property that is true at the end of every iteration. Call the 
property . I.e.,  holds if the property is true after iteration . WTS 


Prove the following:

• Initialization. Show that the loop invariant is true at the start of the loop if the 

precondition holds.

• Maintenance. Show that if the loop invariant is true at the start of any iteration, it is 

also true at the start of the next iteration.

• Termination. Show that the loop terminates and that when the loop terminates, the 

loop invariant applied to the last iteration implies the postcondition.

P(i) P(i) i ∀i ∈ ℕ . P(i)



Runtime



For Loops  While Loops⟺



Proving Termination

• Usually, a consequence of the loop invariant. 


• The loop invariant implies the loop condition is true after iterations 



• The loop invariant implies the loop condition is false after iteration , so the 
loop exits after the th iteration.
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Mystery Algorithm



Convention



Variations

• One loop after another


• Prove the correctness of each loop in sequence


• Nested loops


• “Inside out”. Decompose (or imagine) the inner loop as a separate function. 
Prove the correctness of that function as a lemma and then prove the 
correctness of the outer loop. We’ll see some examples in the tutorial.



Another way to prove termination
Descending Sequence

• Define a descending sequence of natural numbers indexed by the iteration 
number. I.e. 


• Then,  must be a finite set; otherwise, it would be a set of 
natural numbers with no minimal element, contradicting the Well-Ordering 
Principle. 

a1 > a2 > a3 > . . .

A = {a1, a2, . . . , }



Example.



Proofs of Termination

• Most of the time, the LI will imply termination, saving you from having to do 
another induction proof. I prefer this method.


• However, it is easier to define a descending sequence of natural numbers in 
some cases - we’ll see some examples in the tutorial.



 Merge

• Inputs:  are lists of sortable elements.


• Precondition:  are sorted lists


• Postcondition: returns a sorted list 
consisting of all the elements in  and 

x, y

x, y

x y



Counters

• If , then  is a mapping of elements of  to the number 
of times they appear. 


• E.g. 


• You can think of  as a function from 

l ∈ List[X] Counter(l) l

Counter([1,2,3,2,1,1,1,4]) = {1 : 4, 2 : 2, 3 : 1, 4 : 1}

Counter(l) X → ℕ



 Merge

• Inputs:  are lists of sortable elements.


• Precondition:  are sorted lists


• Postcondition: 

x, y

x, y





Takeaways

• It’s normal for the loop invariant to have many parts!


• If you’re trying to prove a loop invariant and you get stuck and wish some 
other property holds, try adding what you need as part of the loop invariant.


• For example, it’s common for part 4 of a loop invariant to imply part 1 of the 
loop invariant.



Summary: Correctness

• If the algorithm is recursive, prove correctness directly by induction on the 
size of the input.


• For algorithms with loops, prove the correctness of the loop by defining a 
Loop Invariant, proving the Loop Invariant, and showing that the Loop 
Invariant holds at the end of the algorithm implies the postcondition.


