SHAKTI KUMAR

Graduate student at the Dept. of Computer Science, University of Toronto enthusiastic about making a fundamental contribution in the field of machine learning

EDUCATION	UNIVERSITY OF TORONTO MSc. Applied Computing	2019-Present GPA: 4/4	
	• R. V. COLLEGE OF ENGINEERING, BANGALORE B.Eng., Computer Science and Engineering	2014-2018 GPA: 9.72/10	
COURSES	 Machine Learning and Data Mining Intelligent Adaptive Interventions Reinforcement Learni Neural Networks and 	ng Deep Learning	
SKILLS	 Languages: Python, MATLAB, C, C++ Machine Learning: Unsupervised Learning (mixture modelling, expectation maximization, variational autoencoders), Generative Modelling (gaussian discriminant analysis), PyTorch, Tensorflow Cl/CD: git, Docker, Jenkins, SonarQube Development: Unit Testing, Functional Testing, SCAVA Vulnerability scans 		
Research	 Learning Robust Latent Representation for Controllable Speech Synthesis Learning disentangled latent features for controlled text to speech synthesis. Proposed a Transformer based VAE through identity map reordering and gating. Discovering improved clusters of latent variables robust against collapse in case of limit LSTM based state-of-the-art for speech generative models. Forcing discovery of different features in supervised and unsupervised latent variables. 	May'20-Present	
	 Adaptive Transformers in RL Jan'20-April'20 Using a learnable context length for attention in partially observable and memory intensive tasks in RL. Showing performance improvements compared to current state-of-the-art Transformer XL and XL-1 architectures in these Partially Observable MDP environments. To our knowledge this was the first work to stabilize Adaptive Attention Span in RL. Project Homepage- <u>https://github.com/jerrodparker20/adaptive-transformers-in-rl</u> 		
	 Adaptive Attention based Kernels for Image Classification Learning self-attention kernel sizes for image classification. Compare its performance to fixed-size local attention and convolution kernels. Discussion on whether adaptive attention can be helpful in correlating global features FLOP count over CNN and attention based architectures. Project Homepage- <u>https://github.com/JoeRoussy/adaptive-attention-in-cv</u> 	Jan'20-April'20 and yield any reduced	
	 Cooperative Learning for Anomaly Correction Modelling of an anomaly-correction system via inverse reinforcement learning Learning to execute corrective actions in different conditions by working alongside hur Inverse Reinforcement Learning setting Project Homepage- <u>https://github.com/shaktikshri/adaptiveSystems</u> 	Sept'19-Jan'20 mans in a Cooperative	
	 Approximate Cross Validation in Incremental Learning Invented a method for functional estimation of cross validation in incremental learning rextracted via caffe2 architecture; Pending patent status. Functionally estimating the hyperparameters at each incremental step instead of a convhyperparameter search on previously learnt inputs Removes the need to store previous data points in online learning systems for cross validation 	Jan'17-Sept'18 models for features entional dation purpose	

PAPERS	 [In Preparation] Shakti Kumar, Jithin Pradeep, Hussain Zaidi. Learning Latent Features through Disentangled Sequential Autoencoders. Shakti Kumar, Jerrod Parker, Panteha Naderian. Adaptive Transformers in RL. 2020. arXiv: 2004.03761 [cs.LG]. Shakti Kumar, Jerrod Parker, Joe Roussy. Adaptive Attention Span in Computer Vision. 2020. arXiv: 2004.08708 [cs.CV]. Method, System and Apparatus for Providing Efficient and Secured Authentication using Biometric Credentials, Indian Patent Application Number 201841036854, filed September 2018. Patent Pending. Available online at https://ipindiaservices.gov.in/PublicSearch/PublicationSearch/ApplicationStatus M. K. Giluka, T. Priyadarshi, S. Kumar, A. A. Franklin and B. R. Tamma, "An enhanced EAB algorithm to reduce RACH congestion due to IoT traffic in LTE-A networks," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 395-400. https://ieeexplore.ieee.org/document/8355156 	
	 Vanguard CAI, Research Intern, Toronto Working in unsupervised learning of latent features in speech Architectural changes in Transformers for robust latent representation learning 	1ay 2019-Present
Experience	 Cisco Systems, Inc. Software Developer, Bangalore Learning of new malwares with unknown profile by observing their activity on exclusively set Used tf-idf vector conversion of system calls of these malwares for incremental threat model Developed Long Short Term Memory (LSTM) bots using RASA and Cisco's MindMeld libraries 	2018-2019 Honeypots updates
TEACHING	 CSC384 Introduction to Artificial Intelligence Designing tests and assignments on probability, bayesian networks, markov models and mon search methods. The course was supervised by Prof. Bahar Aameri and Prof. Sonya Allin. Course Homepage- <u>https://www.teach.cs.toronto.edu//~csc384h/winter/</u> 	Winter 2020 te carlo tree
Awards	 Student Presentation Award, Applied Research in Action (ARIA), MScAC Graduating Batch Vector Scholarship in Artificial Intelligence (VSAI), CDN 17,500 Best Final Year Project, Dept. of CSE, R. V. College of Engineering Summer Research Fellow of the Indian Academy of Sciences. INR 20,000 Youngest to become member of Network Mobility Systems Group, IIT Hyderabad 	2020 2019 2018 2016 2016