
CSC373H1 Summer 2012 Assignment #2 Version 1.3(July 5, 2012)

Due: Tuesday July 3rd at 6:00PM in class, or Thursday July 5th at 6:00PM electronically
Worth: 4%.
For each question you have to clearly write your algorithm in English and prove that it finds the optimal
answer. In any of your answers you can use any algorithm we discussed in class without proving it solves
the problem we discussed in class optimally. If we discussed the runtime of the algorithm you can also use
that without reproving it. The same goes for any Lemma, Theorem or Fact we discuseed in class.
This assignment is about dynamic programming and my solutions are all using that technique, however
you are welcome to write any correct solution. If you use dynamic programming it is imperative that you
give a very precise, clear definition of the array you are filling. That means something like “D[k] is the
minimum number of 1in× 1in× 1in bricks you need to build a filled k × k × k block made out of bricks.”
It does not mean D[k] = min1≤i<k(D[i] + i2k), that is a recurrence relation not a definition. You first give
the definition of the elements of the array, then the recurrence relation and then your program.

Question #1: PLISP but better (6pt)

PLISP is the future of programming languages. A PLISP program is just a string of open and close
parenthesis which makes it perfect for programming on keyboards which only have two keys. A machine
“executes” the program by reading it from left to right keeping track of open and closed parenthesis. A
valid program will always be a proper parenthetical expression. Furthermore, because the machine has
limited memory at no point during the execution there should be more than l parentheses opened which
are not closed yet. In other words a string x[1 . . . n] is a valid program if and only if it has all the following
properties:

1. It is made of only the two characters “(” and “)”,

2. The number of “(” characters in x should be the same as the number of “)” characters,

3. For any 1 ≤ i ≤ n, the number of “(” in x[1 . . . i] has to be no less than the number of “)” in x[1 . . . i],

4. For any 1 ≤ i ≤ n, the number of “(” in x[1 . . . i] has to be no more than the number of “)” in
x[1 . . . i] plus l.

We call the number of valid programs (of length n) Pl,n. Your task is to devise an algorithm that takes
n, l, p as input and prints Pl,n modulo p. You can assume that p > 1 and l ≤ n. Prove that your algorithm
is correct and analyze its runtime. To get the full marks your algorithm should run in time O(n2).

Example For n = 4, l = 2, p = 100 the answer is 2.
For n = 4, l = 1, p = 15 the answer is 1.
For n = 6, l = 3, p = 5 the answer is 0 because the number of possible programs is 5 which is 0 modulo 5.
For n = 6, l = 2, p = 5 the answer is 4.

Hint: Don’t try to give a closed form for the answer, use dynamic programming.

University of Toronto (St. George Campus), Department of Computer Science Page 1 of 3



CSC373H1 Summer 2012 Assignment #2 Version 1.3(July 5, 2012)

Question #2: Catching Apples and oranges (5pt)

It is raining apple and oranges and you need to catch them! To be precise there are n fruits that are falling
on an l meter long road and you have a truck which is originally parked at the start of the road that you
can use to catch them. You know that the ith fruit will drop at position xi of the road (i.e. xi meters from
the start of the road) at time ti. If your truck is at position xi at time ti you catch that fruit (for simplicity
we think of the truck as a point) otherwise the fruit will drop on the road and will ruin. You can drive the
truck on the road but its maximum speed is s meters per second. The ti’s are given in seconds from the
beginning (at the beginning the truck is at the start of the road.)
Your task is to devise an algorithm that takes l, n, s, and x1, t1, x2, t2, . . . , xn, tn as input and outputs
the maximum number of fruits that you can catch. Prove that your algorithm is correct and analyze its
runtime. To get the full marks your algorithm should run in time O(n2).

Example If n = 6, l = 10, s = 2, x1 = 6, t1 = 3, x2 = 2, t2 = 2, x3 = 1, t3 = 2, x4 = 1, t4 = 1,
x5 = 10, t4 = 6, x6 = 0, t4 = 11 then the answer is 4. Here is how you drive your truck to catch that many
fruits:

• You start your truck at time 0 and drive towards position 1 you will get there at time 0.5,

• You wait until time 1 and collect the fruit number 4,

• You drive towards position 2 and get there at time 1.5,

• You wait until time 2 and collect the fruit number 2,

• You drive towards position 10 and get there at time 6 and collect the fruit number 5,

• You drive towards position 0 and get there at time 11 and collect the fruit number 6.

The reason you can not collect more than 4 fruits is that from fruits 1, 2, and 3 you can collect at most 1;
you can only collect one of the fruits 2 and 3 because they drop at the same time at different places and
if you collect either you can’t get in time to position 6 to collect fruit 1.

University of Toronto (St. George Campus), Department of Computer Science Page 2 of 3



CSC373H1 Summer 2012 Assignment #2 Version 1.3(July 5, 2012)

Question #3: Collection coins: The multiplayer edition (5pt)

You and your friend are playing “Collecting coins: going up and right” game discussed in class but now in
multiplayer! To be precise they are n coins on the plain. The ith coin is at point (xi, yi) with xi, yi ≥ 0.
You and your friend both start at point (0, 0) and you should each take a path starting from there going
only up and right, that is you can only move in the direction of increasing x or y. A coin is “collected” if
it is on your or your friend’s path; but if it is on both of your paths it will only be collected one. Devise an
algorithm that takes n and (x1, y1), (x2, y2), . . . , (xn, yn) and outputs the maximum number of coins that
you and your friend can collect together. Prove that your algorithm is correct and analyze its runtime. To
get the full marks your algorithm should run in time O(n3).

Example: Figure 1a shows an example with n = 4 and coins at (1, 1), (2, 2), (3, 3), (2, 4); the an-
swer is 4 You will take the path (0, 0) → (1, 1) → (2, 2) → (3, 3) and your friend will take the path
(0, 0) → (2, 5). Notice how the answer is not 6 because although your friend could take the path
(0, 0)→ (1, 1)→ (2, 2)→ (2, 5) the first two coins are already collected by you and won’t count twice.

Figure 1b shows an example with n = 10 and coins at (2, 0), (2, 1), (1, 2), (0, 3), (1, 3), (2, 3), (3, 3), (2, 4), (1, 5), (1, 6);
the answer is 8. You will take the path (0, 0)→ (2, 0)→ (2, 1)→ (2, 3)→ (2, 4) and your friend will take
the path (0, 0)→ (1, 2)→ (1, 3)→ (1, 5)→ (1, 6).

•

•

•

•

×

(a) Example 1

•

•

•

• • • •

•

•

× •

(b) Example 2

Figure 1: Examples for Question 3. Coins are shown with • and the starting point with ×.

University of Toronto (St. George Campus), Department of Computer Science Page 3 of 3


