
CSC373H1 Summer 2012 Tutorial Notes #1 May 22, 2012 (Version 1)

Question #1: Interval Scheduling

Given n jobs, each an interval with a starting time si and finishing time ti choose the maximum number
of them that don’t intersect. I have already gone over the problem and its solution which is the following:

Input: Integer n, set of intervals J = {j1 = [s1, f1], j2 = [s2, f2], . . . , jn = [sn, fn]}.
Output: Schedule with maximum number of non-intersecting intervals.

Chosen← ∅1

Sort(J , by increasing finishing time)2

for i← 1 to n do3

if ji doesn’t intersect with any job in Chosen then4

Chosen← Chosen ∪ {ji}5

end6

end7

return Chosen8

We have already shown in class that this greedy job scheduling is optimal using a “promising argument”
that argued by induction that for all i after the ith step of the loop the choices we have made so far (the
set Chosen) can be completed to some optimal solution.
What I want you to do is to go over the problem and the algorithm again and prove its correctness with
the following charging argument:
Consider a set G output by the greedy algorithm and a set O which is optimal. We will show how to match
each job in G with at most one job in O which shows that the set G can’t be smaller than O. Look at jobs
in the set G in the order greedy has put them there, i.e. in increasing order of finishing time. Whenever
greedy puts a job in G match it with all the jobs in O that intersect it (including itself if it is common
between G and O) and delete them from O. There are two important observations:

1. When a job ji is considered all the jobs it is matched to intersect with it at its finishing time. This
is because the job ji that greedy considers is always the job with the smallest finishing time among
those that don’t intersect any job previously selected by greedy. What this implies is that all these
jobs intersect each other too at the point fi so not more than one of them can be in O.

2. Each job in O has to be matched to some job in G because if it is not when it was considered by
greedy it didn’t intersect any of the previously selected jobs in G (otherwise it would have been
deleted from O by this point and matched to something) so greedy would select it!

These two things together give us a one-to-one and on-to mapping from G to O showing that they have
the same size. In other words G is optimal.

University of Toronto (St. George Campus), Department of Computer Science Page 1 of 2

CSC373H1 Summer 2012 Tutorial Notes #1 May 22, 2012 (Version 1)

Question #2: Fractional Knapsack (only if you had extra time)

You have a knapsack of capacity S and n items the ith of which weights wi and is worth vi. But all these
items can be broken into pieces, they are valuable minerals lets say. You want to pack your knapsack with
the maximum value. So if S = 10, w1 = 6, v1 = 1, w2 = 5, v1 = 2, w3 = 10, v1 = 2 then we can take 5 units
of the second item (worth $2) and 5 units of the 3rd (worth $1) for a total value of $3.
The algorithm is of course is to sort according to decreasing unit value, and the optimality is more or less
trivial.

University of Toronto (St. George Campus), Department of Computer Science Page 2 of 2

