
CSC373H1 Summer 2012 Tutorial Notes #2 May 29, 2012 (Version 1.2)

Question #1: Scheduling unit jobs with penalties and deadlines

You are given n job the ith of which has deadline di and penalty pi. Each job takes precisely one hour to
finish and can not be interrupted once started. All deadlines are integers and di ≥ 1. If you finish job i
before its deadline that is great if you can’t you will have to pay pi no matter if/when you finish it. Also,
all the deadlines are less than or equal to n (but you can assume that without loss of generality anyway,
otherwise you can always complete that job because there will be sometime before t = n when you are
idle.)

Example: If you have n = 4 with p1 = 5, d1 = 2, p2 = 5, d2 = 2 p3 = 100, d3 = 1, p4 = 10, d4 = 4, then
one possible optimal solution is p3 p2 p4 with penalty 5.

Solution: Think about the time line as 0 to n and being divided to n one hour intervals. Originally
the time line is empty, i.e. we haven’t scheduled anything. Sort jobs according to decreasing penalty, then
for each job if there is some time before its deadline when it could be done do it at the latest such time
otherwise we will not do that job.

Run time: Θ(n2) if we do the search for the last possible time trivially.

Proof of optimality: Define

P (i) ≡ There is an optimal schedule that makes the same choices as the greedy algorithm up to and including job i.

Prove P (i) by induction. P (0) is trivial: It just says there is an optimal solution.
Assume that P (i − 1) holds; we will show P (i) follows. Assume that Oi−1 is the optimal solution that
agrees with all the choices that greedy makes up to but not including on job i. This exists by the induction
hypothesis P (i− 1).
There are two cases:

Case 1: If the choice greedy made was to not schedule job i it must be that just by making the decisions
it made on the first i − 1 jobs there is no place to schedule it before its deadline. But Oi−1 agrees
with the first i − 1 choices of greedy so it can’t finish job i − 1 either and must pay its penalty. If
Oi−1 does schedule job i we just remove it from the schedule and call that Oi otherwise we just define
Oi = Oi−1. In both cases Oi has the same penalty as Oi−1 and is consistent with greedy’s choices up
to and including on the ith job so P (i) is proved and we are done.

Case 2: If the choice greedy made was to schedule job i at time [j−1, j]. Then we have 3 cases depending
on what the optimal solution Oi−1 did with job i:

Case 2.1: Oi−1 did not schedule job i or scheduled it after its deadline. In this case Oi will be
exactly like Oi−1 except that it schedules job i at time [j − 1, j] and if Oi−1 scheduled some
other job (call it i′) at that interval Oi will not schedule that job. Notice that i′ is a job that
Oi−1 is scheduling differently than the greedy algorithm so by induction hypothesis i′ ≥ i.

In this case penalty of Oi is either penalty of Oi−1 minus pi or penalty of Oi−1 minus pi plus pi′ .
Given that i′ ≥ i it must be that pi′ ≤ pi so the penalty of Oi is less than or equal to penalty
of Oi−1 so Oi is also an optimal solution and given that it agrees with the greedy algorithm

University of Toronto (St. George Campus), Department of Computer Science Page 1 of 2



CSC373H1 Summer 2012 Tutorial Notes #2 May 29, 2012 (Version 1.2)

Case 2.2: Oi−1 scheduled job i before its deadline. Notice that because Oi−1 agrees with greedy on
the first i− 1 jobs and by the way the greedy algorithm chooses the time j to schedule job i it
must be that Oi−1 has scheduled job j no later than the slot [j − 1, j]. If Oi−1 has scheduled
job i in this interval we choose Oi = Oi−1 and are done. Otherwise, lets say that Oi−1 has
scheduled job i in the earlier slot [j′ − 1, j′]. Let the job Oi−1 schedules in the interval [j − 1, j]
to be job i′ (if it exists). We set Oi to be exactly like Oi−1 except that we move job i to interval
[j − 1, j] and job i′ (if it exists) to earlier interval [j′ − 1, j′]. Notice that the penalty of Oi is
exactly the same as penalty of Oi−1 because job i′ has been moved earlier in the schedule so it
can’t contribute to the penalty of Oi unless it also contributes to the penalty of Oi−1 and job i
is move to some place before its deadline so it does not contribute to the penalty of Oi−1. So Oi

must also be optimal and it agrees with the greedy algorithm on all i jobs so we have completed
the proof.

If you had extra time: If you had extra time at the end talk about how you can implement this using
disjoint sets in time Θ(n log n). To do this one thinks of all the n possible time slots and makes a disjoint
sets data structure on top of them. The idea is that if i and j are in the same set then the latest available
time slot before t = i and t = j are the same. There will also be an array latest_available[0...n]

with latest_available[get_set(i)] being the latest available time slot before i that is available. This
way whenever the time slot [i−1, i] gets filled we do a join_set(i-1, i) because now the latest available
time slot before i− 1 and i are the same and so is the latest available time slot before any place which was
in the same set as i or i − 1. And then we update the latest_available[get_set(i)] to the old value
of latest_available[get_set(i-1)]. Overall:

Input: Integer n, penalties p1, . . . , pn and deadlines d1, . . . , dn.
Output: Schedule with minimum penalty.

int latest available[0...n]1

The 0th item is a dummy and will be 0 for ‘‘nothing available before that time’’2

for i← 0 to n do3

latest available[i]← i4

make set(i)5

end6

Sort(Jobs according to decreasing pi’s)7

for i← 1 to n do8

j ← latest available[get set(di)]9

if j 6= 0 then10

schedule job i at time interval [j − 1, j]11

old available← latest available[get set(j-1)]12

join set(j − 1, j)13

latest available[get set(j)]← old available14

end15

end16

University of Toronto (St. George Campus), Department of Computer Science Page 2 of 2


