
CSC373H1 Summer 2012 Tutorial Notes #3 June 5, 2012 (Version 1.1)

Question #1: Planning a company party (Problem 15-6 from CLRS)

You are asked to plan the company party for a big company and the first step is to choose who will be
invited. There are two factors to be considered: a) each person has a desirability ai; if this is high you
really want to invite the person to the party (think the funny guy); b) the company hierarchy is organized
as a rooted the tree. The root is the CEO of the company and everyone else is the child of their direct
boss in the tree. You should never invite someone and their direct boss to the party (that would make it
hard for them to have fun.)
Your job is to devise an algorithm that takes n, the number of people in the company, a1, . . . , an and the
company hierarchy as input and outputs the set of people to invite. The way the company hierarchy is
given is as follows. You are given sets C1, C2, . . . , Cn where Ci contains the direct subordinates of the ith
employee. You are guaranteed that these make a tree (each person except the CEO is in precisely one
of the Ci sets and there are no cycles.) To make your life easier we also know that the CEO is always
employee number 1 and that each person’s subordinates have a higher number than themselves.
You should never invite a person and their direct boss at the same time and among all possible such
solutions you should output the one with the maximum total desirability. The total desirability of an
invitation list is the sum of the desirability of the people invited.

Example: An example input is n = 4; a1 = −2, a2 = 1, a3 = 1, a4 = 4; C1 = {2, 3}, C2 = {4}, C3 = ∅,
C4 = ∅. The company hierarchy is drawn below in Figure 1.

/.-,()*+1

��������

>>>>>>>>a1=−2

/.-,()*+2 a2=1 /.-,()*+3 a3=1

/.-,()*+4 a4=4

Figure 1: An example of a company hierarchy.

There are 8 valid invitation lists (ones that respsect the rule about not inviting a person and their di-
rect boss): ∅, {1}, {2}, {3}, {4}, {1, 4}, {2, 3}, {3, 4}. The total desirabilities of these invitation lists are
0,−2, 1, 1, 4, 2, 2, 5 respectively. So the optimal solution is to invite the employees 3 and 4 and no one else.

Solution: (Please demonstrate the solution on a tree.)
Define the following two quantities:

D[i] =
“The maximum possible total desirability of a valid invitation list that only invites i
and its (direct or indirect) subordinates.”,

Dexclude[i] =
“The maximum possible total desirability of a valid invitation list that only invites
the (direct or indirect) subordinates of i.”.

It is not hard to see that these two values satisfy the following recursive conditions.

Dexclude[i] =
∑
j∈Ci

D[j],

D[i] = max(
∑
j∈Ci

D[j], ai +
∑
j∈Ci

Dexclude[j]).

University of Toronto (St. George Campus), Department of Computer Science Page 1 of 2

CSC373H1 Summer 2012 Tutorial Notes #3 June 5, 2012 (Version 1.1)

It is also clear from definition that D[1] is what we are trying to compute. So we can write two procedures
that compute these values recursively. Instead observe that D[i] and Dexclude[i] depend only on D[j] and
Dexclude[j] when j is a subordinate of i so we can compute these values in a buttom up fashion on the
company hierarchy tree. Given that we know all the subordinates of i have bigger numbers that i we can
do this in an even easier way: compute D[n], Dexclude[n] first then D[n− 1], Dexclude[n− 1] and all the
way down to D[1], Dexclude[1].

Implementation:

Input: Integer n, desirabilities a1, . . . , an and subordinate lists C1, . . . , Cn.
Output: The maximum possible total desirability.

int D[1...n]1

int Dexclude[1...n]2

for i← n downto 1 do3

sum of children← 04

sum of children excluded← 05

foreach j ∈ Ci do6

sum of children excluded← sum of children excluded + Dexclude[j]7

sum of children← sum of children + D[j]8

end9

Dexclude[i]← sum of children10

D[i]← max(sum of children excluded + ai, sum of children)11

end12

return D[1]13

Run time: The ith iteration of the for loop takes 2|Ci|+ 4 steps, so the total runtime is 4n + 2
∑

i |Ci|.
But each person except the CEO has one direct boss and the CEO has no direct boss so

∑
i |Ci| = n− 1.

So the total runtime is 6n− 2 = Θ(n).

Proof of optimality: The kth iteration of the for loop has i = n − k + 1 we prove by induction on k
that D[i], . . . , D[n] and Dexclude[i], . . . , Dexclude[n] are correct after this iteration.

If you had extra time: Discuss how to compute the optimal invitation list (not just the maximum
total desirability.)

University of Toronto (St. George Campus), Department of Computer Science Page 2 of 2

