
CSC373H1 Summer 2012 Tutorial Notes #8 August 7, 2012 (Version 1.1)

Question #1: Set-Cover is NP-complete

In the (decision version of) Set-Cover problem you are given n, m, k and m sets A1, A2, . . . , Am ⊆
{1, . . . , n} and asked “Is there a subset S ⊆ {1, . . . , n} that has at least one element from each Aj and is
of size at most k?” I.e. does there exist S ⊆ {1, . . . , n} such that |S| ≤ k and S ∩Aj 6= ∅ for all 1 ≤ j ≤ m.
Show that this problem is NP-complete.

Solution: To show that Set-Cover is NP-complete we have to show two things: a) Set-Cover ∈ NP;
b) for every L ∈ NP, L ≤P Set-Cover.
To show that Set-Cover ∈ NP we have to provide an algorithm that takes an input for Set-Cover and
a certificate cert. The algorithm has to be efficient (run in time polynomial in length of the first input)
and if the answer to the Set-Cover input is “Yes” there should exist a value for cert that makes the
algorithm output “Yes”; otherwise the algorithm should output “No” for every cert. Lemma 1 states that
Algorithm 1 seen below has this property.

Algorithm 1: A tester showing Set-Cover ∈ NP.

Input: n, m, k, sets A1, A2, . . . , Am ⊆ {1, . . . , n} and a string cert
Output: “Yes” or “No”.

1 S ← Interpret cert as a subset of {1, . . . , n}.
2 if |S| > k then
3 return “No”
4 end
5 for j ← 1 to m do
6 if Aj ∩ S = ∅ then
7 return “No”
8 end

9 end

10 return “Yes”

Lemma 1. The answer to the Set-Cover input n, m, k and A1, . . . , Am is “Yes” if and only if there
exists a cert such that Algorithm 1 returns “Yes” on input n, m, k, A1, . . . , Am and cert.

Proof. Is left as an exercise.

To show that for every L ∈ NP L ≤P Set-Cover (i.e. Set-Cover is NP-hard) we only need to show
that L′ ≤P Set-Cover for some specific NP-hard problem L′ of our own choosing. That way we will
have,

L′ ≤P Set-Cover ∧ ∀L ∈ NP L ≤P L′ ⇒ ∀L ∈ NP L ≤P Set-Cover.

In class we saw that 3-SAT is NP-hard (in fact we showed that 3-SAT is NP-complete) so it is enough
to show that 3-SAT ≤P Set-Cover.
Remember that in the 3-SAT we are given n′, m′, the name of n′ variables x1, . . . , xn′ and m′ clauses
C1, . . . , Cm′ and are asked if there is an assignment of True/False values to the variables that makes all
the clauses “satisfied”. Each clause is an OR of three “literals” and is said to be satisfied if at least
one of the literals are true. A literal is either a variable or the negation of a variable. For example if
n′ = 5, x1, x2, . . . , x5,¬x1,¬x2, . . . ,¬x5 are the possible literals and x1 ∨ ¬x2 ∨ ¬x5, x2 ∨ x4 ∨ ¬x5 and

University of Toronto (St. George Campus), Department of Computer Science Page 1 of 3

CSC373H1 Summer 2012 Tutorial Notes #8 August 7, 2012 (Version 1.1)

¬x1 ∨¬x3 ∨¬x5 are some of the possible clauses1; the assignment x1 = False, x2 = True, . . . , x5 = True
does not satisfy the first clause but satisfies the other two and the assignment x1 = False, . . . , x5 = False
satisfies all the clauses. So if the input is n′ = 5, m′ = 3 , x1, . . . , x5 and x1 ∨¬x2 ∨¬x5, x2 ∨x4 ∨¬x5 and
¬x1 ∨ ¬x3 ∨ ¬x5 the correct output is “Yes”.
To reduce 3-SAT to Set-Cover we have to take an input to 3-SAT and transform it into an input for
Set-Cover. Given that the choices one has to make in coming up with a solution to the 3-SAT input
is whether each variable is set to true or false and the choices one needs to make for a solution to the
Set-Cover input is whether each element of {1, . . . , n} is selected to be in S or not (at first) it seems
natural to have one element in {1, . . . , n} corresponding to each of the variables of the 3-SAT input. After
playing with this idea for a bit it become clear that it does not work. The reason is not very hard: Choosing
an element of {1, . . . , n} to be in S only helps a solution but assigning a variable to be True or False has
both positive and negative consequences for a solution: Assigning xi to be True for example helps all the
clauses that have xi as a literal but hurts all those that have ¬xi as a literal.
The second try would then be as follows: We have an element corresponding to each literal in {1, . . . , n},
i.e. we let n = 2n′ and for each variable xi we will name an element of {1, . . . , n} as xi and another as xi.
The goal is to force the Set-Cover solution to take exactly one of these two elements to be in S while
satisfying all the clauses. This turns out to be not too hard. To force any solution to Set-Cover to choose
exactly one of these two elements we will have a set Ai = {xi, xi} among the sets in the Set-Cover input,
we will also set k = n′ = n/2. This way any solution to the Set-Cover has to take at least one of xi, xi
because of Ai and it has to take at most one because it can not take more than k = n′ elements overall.
Given what we have so far it is easy to make sure that the Set-Cover solutions also “satisfy” the clauses
of the original 3-SAT input. For every clause of the original 3-SAT input we will add a set Aj that has
all the literals in the clause. This way at least one of the literals has to be selected. The end result is a
reduction that is shown as Algorithm 2 below. Lemma 2 states that Algorithm 2 is a correct reduction
from 3-SAT to Set-Cover.

Algorithm 2: A reduction from 3-SAT to Set-Cover.

Input: n′, m′, variables x1, . . . , xn′ and m′ clauses C1, . . . , Cm′

Output: n, m, k, sets A1, A2, . . . , Am ⊆ {1, . . . , n}
1 n← 2n′

2 k ← n′

3 m← n′ + m′

4 Give the following names to the elements of {1, . . . , n}. x1, x1, x2, x2, . . . , xn′ , xn′

5 for i← 1 to n′ do
6 Ai ← {xi, xi}
7 end
8 for j ← 1 to m′ do
9 l, l′, l′′ ← the literals in Cj

10 An+j ← {l, l′, l′′}
11 end

12 return n, m, k, sets A1, A2, . . . , Am

Lemma 2. For every value input of 3-SAT Algorithm 2 produces a valid input of Set-Cover such that
their answer is exactly the same.

1¬ is the symbol for NOT and ∨ is the symbol for OR

University of Toronto (St. George Campus), Department of Computer Science Page 2 of 3

CSC373H1 Summer 2012 Tutorial Notes #8 August 7, 2012 (Version 1.1)

Proof. First assume that the answer to the 3-SAT input is “Yes”. Then there exists an assignment
x1 = a1, . . . , xn = an where ai’s are True/False values that satisfies all the clauses. We have to show
that the answer to the produced Set-Cover instance is also “Yes”. Consider the set S that for each i
contains xi if ai = True and xi if ai = False, i.e. the set that corresponds to all satisfied literals. Clearly
|S| = n′ ≤ k and for all 1 ≤ i ≤ n′, S ∩ Ai 6= ∅. We need to show that S takes at least one element of
An′+1, . . . , Am. Consider An′+j ; this set corresponds to the clause Cj of the 3-SAT input and contains all
its literals. Given x1 = a1, . . . , xn = an satisfies the clause Cj it must set one of its literals to true and by
definition (of S) that literal is in S so S ∩ An′+j 6= ∅. This completes the proof that if the answer to the
3-SAT input is “Yes” then the answer to the Set-Cover input is “Yes”.
We now show that if the answer to the 3-SAT input is “No” then the answer to the Set-Cover input is
also “No”. Assume that the answer to the Set-Cover input is not “No”, i.e. it is “Yes”, we will show
that this implies that the answer to the 3-SAT input is also “Yes”. If the answer to the Set-Cover input
is “Yes” then there exists a set S of size at most k that intersects A1, . . . , Am. Given that S intersects
A1, . . . , An′ it has to take at least one of xi, xi. This together with the fact that S takes at most k = n′

elements implies that |S| = n′ and that S takes precisely one of xi, xi for every i. Consider the assignment
x1 = a1, . . . , xn = an where ai’s are True/False values defined as

ai =

{
True if xi ∈ S

False if xi ∈ S
.

We will show that this assignment satisfies all the clauses of the 3-SAT input so the answer to the 3-SAT
input must be “Yes”. Consider a clause Cj : S is a valid answer to the Set-Cover input so S ∩An′+j 6= ∅.
But An′+j is the set of literal of Cj so it follows from the definition of the assignment x1 = a1, . . . , xn = an
that it sets at least one of the literal of Cj to true hence satisfying Cj . This completes the proof that if
the answer to the 3-SAT input is “No” then the answer to the Set-Cover input is also “No”.

Finally putting everything together we have the following Theorem.

Theorem 3. The (Yes/No) problem Set-Cover is NP-complete.

Proof. It follows from Lemma 1 that Set-Cover ∈ NP. On the other hand Lemma 2 implies that
3-SAT ≤P Set-Cover which together with the theorem from the lecture that 3-SAT is NP-hard implies
that Set-Cover is NP-hard. These two taken together mean that Set-Cover is NP-complete.

University of Toronto (St. George Campus), Department of Computer Science Page 3 of 3

