University of Toronto Department of Computer Science

Lecture 6: Requirements Modeling IT

Last Week:

Modeling and Analysis (I)
General Modeling Issues
Modeling Goals, Organizations,
and Non-Functional Requirements

This Week:
Modeling and Analysis (II)
Modeling Functionality
Structured Analysis
Object Oriented Analysis

Next Week:
Modeling and Analysis (IIT)
Formal Modeling Techniques

Formal Reasoning

© 2000-2003, Steve Easterbrook

7}

University of Toronto Department of Computer Science

Structured Analysis

- Definition
% Structured Analysis is a data-oriented approach to conceptual modeling
% Common feature is the centrality of the dataflow diagram

% Mainly used for information systems
> variants have been adapted for real-time systems

- Modeling process: indicative optative
(existing system) (new system)
AbstractA -
(essential functions) 2. Current > 3. New logical
logical system system
4 V.
Concrete 1. Current 4. New
(detailed model) physical system physical system

% Model of current physical system only useful as basis for the logical model

% Distinction between indicative and optative models is very important:
> Must understand which requirements are needed to continue current functionality,
and which are new with the updated system

© 2000-2003, Steve Easterbrook 2

* University of Toronto Department of Computer Science

Central Concepts

Source: Adapted from Svoboda, 1990, p257

- Process (data transformation) - External entity

A, A&

% activities that transform data % An activity outside the target system
% related by dataflows to other % Acts as source or destination for
processes, data store, and external dataflows that cross the system
entities. boundary
% External entities cannot interact
- Data flow directly with data stores
% indicate passage of data from output
of one entitie to input of another - Data group
% represent a data group or data % A cluster of data represented as a
element single dataflow
% Consists of lower level data groups,
- Data store or individual elements o
% a place where data is held for later
use - Data element
% Data stores are passive: no % a basic unit of data
transformations are performed on
the data
© 2000-2003, Steve Easterbrook 3
* University of Toronto Department of Computer Science

. Modeling tools

Source: Adapted from Svoboda, 1990, p258-263

- Data flow diagram

% Context diagram (“Level 0")
> whole system as a single process

% intermediate level DFDs decompose each process
% functional primitives are processes that cannot be decomposed further

- Data dictionary

% Defines each data element and data group
% Use of BNF to define structure of data groups

- Primitive Process Specification
% Each functional primitive has a “mini-spec”
% these define its essential procedural steps
% Expressed in English narrative, or some form of pseudo-code

- Structured Walkthrough

© 2000-2003, Steve Easterbrook 4

University of Toronto Department of Computer Science

Dataflow Diagrams (DFDs)

customer

: Ke
Timetables : Y
4_/ H O process
schedule :
: —_—

dataflow (no

form of
trave|

proposed

itinerg proposed control implied)
booking jti — —
system | ¢ 3. Fare tables: = data store
i reserve ——
bpoking 4_/ H .
réquest _"°*™ /' booked i fares D external entity
H . tickets
: itinerary H goonaog
tickets : : :system boundary
bookin
oxing booking
confirmation customer
system
- Notes:

% every process, flow, and datastore must be labeled
% representation is hierarchical

>each process will be represented separately as a lower level DFD
% processes are normally numbered for cross reference
% processes transform data

>can't have the same data flowing out of a process as flows into it
© 2000-2003, Steve Easterbrook

Sy . .
e University of Toronto

Department of Computer Science

Hierarchies of DFDs

Level O: Context Diagram

Level 1: Whole System

customer
Query

customer

proposed
itinerar:

proposed g
itinerary ee—
Fare tables :
——

- booking
onfirmation
system

DoURITY

confirmation

© 2000-2003, Steve Easterbrook

& . .
' University of Toronto

Department of Computer Science

Data Dictionary & Process Specs

Source: Adapted from Svoboda, 1990, p262-4

Example Data Dictionary

Mailing Label =
customer_name +
customer_address

customer_name =
customer_last_name +
customer_first_name +
customer_middle_initial
customer_address =
local_address +
community_address + zip_code
local_address =
house_number + street_name +
(apt_number)
community address =
city_name + [state_name |
province_name]

Example Mini-Spec
FOR EACH Shipped-order-detail

GET customer-name + customer-
address

FOR EACH part-shipped
GET retail-price

MULTIPLY retail-price by
quantity-shipped

TO OBTAIN total-this-order
CALCULATE shipping-and-handling

ADD shipping-and-handling TO
total-this-order

TO OBTAIN total-this-invoice
PRINT invoice

© 2000-2003, Steve Easterbrook

&

University of Toronto

Department of Computer Science

Specification (SASS)

% ‘classic’ structured analysis

% Developed by Gane and Sarson
% Notation similar to Yourdon & DeMarco

data stores

- Structured Analysis and Design Technique

% Developed by Yourdon and DeMarco in the mid-70's

- Structured System Analysis (SSA)

DFD variants

Source: Adapted from Svoboda, 1990, p264-5

(SADT)
% Developed by Doug Ross in the mid-70's
% Uses activity diagrams rather than dataflow diagrams
% Distinguishes control data from processing data
. @ &@? Performing
- Structured Analysis and System mechanism

SASS T Rem

% Adds data access diagrams to describe contents of

- Structured Requirements Definition (SRD) 1 (1D
% Developed by Ken Orr in the mid-70's Name
% Introduces the idea of building separate models for \)
each perspective and then merging them @@& ame

© 2000-2003, Steve Easterbrook

i . .
%& University of Toronto Department of Computer Science

W SASS methodology

Source: Adapted from Davis, 1990, p83-86

1. Study current environment

% draw DFD to show how data flows through current organization
% label bubbles with names of organizational units or individuals

2. Derive logical equivalents
% replace names (of people, roles,..) with action verbs
% merge bubbles that show the same logical function
% delete bubbles that don't transform data

3. Model new logical system

% Modify logical DFD to show how info will flow once new system is in place
» ..but don't distinguish (yet) which components will be automated

4. Define a number of automation alternatives
% document each as a physical DFD
% Analyze each with cost/benefit trade-off
% Select one for implementation
% Write the specification

© 2000-2003, Steve Easterbrook 9
=~ _University of Toronto Department of Computer Science

7 Alternative Process Model: SRD

Source: Adapted from Davis, 1990, p72-75
1. Define a user-level DFD

% interview each relevant individual in the current organization
» actually a role, rather than an individual

% Identify the inputs and outputs for that individual
% Draw an ‘entity diagram' showing these inputs and outputs

2. Define a combined user-level DFD
% Merge all alike bubbles to create a single diagram
% Resolve inconsistencies between perspective

3. Define the application-level DFD
% Draw the system boundary on the combined user-level DFD
% Then collapse everything within the boundary into a single process

4. Define the application-level functions

% label inputs and outputs to show the order of processing for each function
» I.e. for function A, label the flows that take part in A as A1, A2, A3,...
© 2000-2003, Steve Easterbrook 10

. University of Toronto Department of Computer Science

Later developments

- Later work recognized that:
% development of both current physical and current logical models is overkill
% top down development doesn't always work well for complex systems
% entity-relationship diagrams are useful for capturing complex data

- Structured Analysis / Real Time (SA/RT)

% Developed by Ward and Mellor in the mid-80's

% Extends structured analysis for real-time systems
> Adds control flow, state diagrams, and entity-relationship models

- Modern Structured Analysis

% Captured by Yourdon in his 1989 book

% Uses two models: the environmental model and the behavioral model
> together these comprise the essential model

% Includes plenty of advice culled from many years experience with structured

analysis
© 2000-2003, Steve Easterbrook 1
== _University of Toronto Department of Computer Science
v Real-time extensions
Source: Adapted from Svoboda, 1990, p269
Current - -—=o Line
teffsion

gauge N
<« Line COHTI"O'
ension Enable _1 line

S
CO thlOﬂS’ Dlsable\‘

7 /’Dlsable ¥ 31

_Enable

ina

) W
(.
status l

KEY

// -f=,~\ -
QH’ A , ,I \ \\ J/ S\ Control
Tension 7, 0\ \
7, \ Transfor-
/’Tensmn k7, 7 M\ Enable |\/n’am\ell mation
/ L /,5‘9{"'5|sable ; \\\ h ID ‘
/ -, Disable N\
‘; , \

= _> Control flow
(discrete)

/S'A Control flow

. (continuous)
Monitor

Current Tension

tensi

Tension settings table _ Tension
—_— inlet control

© 2000-2003, Steve Easterbrook 12

@ University of Toronto Department of Computer Science

i

V. Evaluation of SA techniques

Source: Adapted from Davis, 1990, p174

- Advantages

% Facilitates communication.

% Notations are easy to learn, and don't require software expertise
% Clear definition of system boundary

% Use of abstraction and partitioning

% Automated tool support
» e.g. CASE tools provide automated consistency checking

- Disadvantages
% Little use of projection
> even SRD's 'perspectives’ are not really projection

% Confusion between modeling the problem and modeling the solution
> most of these techniques arose as design techniques

% These approaches model the system, but not its application domain
% Timing issues are completely invisible

© 2000-2003, Steve Easterbrook

13

@ University of Toronto Department of Computer Science

i

v Object Oriented Analysis

- Background

% Model the requirements in terms of objects and the services they provide
% Grew out of object oriented design

» OOD partitions a program in a different way from structured programming
» Result was a poor fit moving from Structured Analysis to Object Oriented Design

- Motivation

% OO0 is (claimed to be) more 'natural’
» As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged
» Hence a structured analysis model will get out of date, but an object oriented
model will not-...
» ..hence the claim that object-oriented designs are more maintainable
% OO emphasizes importance of well-defined interfaces between objects
» compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

© 2000-2003, Steve Easterbrook

14

%’3 University of Toronto

Department of Computer Science

- Objects
% an entity that has state, attributes
and services
% Interested in problem-domain objects
for requirements analysis

- Classes
% Provide a way of grouping objects
with similar attributes or services
% Classes form an abstraction hierarchy
though ‘is_a’ relationships

- Attributes

% Together represent an object's state
% May specify type, visibility and
modifiability of each attribute

- Relationships
% ‘is_a' classification relations
% ‘part_of' assembly relationships

Modeling primitives

- Methods (or 'Services', ‘Functions’)

- Message Passing

- Use Cases/Scenarios

% These are the operations that all

objects in a class can do...
>..when called on to do so by other
objects

% E.g. Constructors/Destructors
>if objects are created dynamically

% E.g. Set/Get

>access to the object's state

% How objects invoke services of other
objects

% Sequences of message passing
between objects
% Represent specific interactions

© 2000-2003, Steve Easterbrook

15

i

s

%’3 University of Toronto

Department of Computer Science

- Classification (using inheritance)

% Classes capture commonalities of a number of objects
> Each subclass inherits attributes and methods from its parent

» Forms an 'is_a’' hierarchy

% Child class may ‘specialize’ the parent class
> by adding additional attributes & methods
> by replacing an inherited attribute or method with another

% Multiple inheritance is possible where a class is subclass of several

different superclasses.

- Information Hiding

% internal state of an object need not be visible to external viewers
% Objects can encapsulate other objects, and keep their services internal

> useful for forming abstractions

- Aggregation

% Can describe relationships between parts and the whole *

Key Principles

© 2000-2003, Steve Easterbrook

16

e University of Toronto

Department of Computer Science

=) Information Hiding

- Objects can contain other objects
% (compare with hierarchies of dataflow diagram in Structured Analysis)

[Serie 1],

Service 2

Service 3

System Model

Object 2

Service 5

1 Service 6

© 2000-2003, Steve Easterbrook

17

University of Toronto

Department of Computer Science

- External Entities
% ..that interact with the system

being modeled
>E.g. people, devices, other systems

- Things
& _.that are part of the domain being

modeled
>E.g. reports, displays, signals, etc.

- Occurrences or Events
% ..that occur in the context of the

system
>E.g. transfer of resources, a control
action, etc.

- Roles
% played by people who interact with
the system

v Nearly anything can be an object...

Source: Adapted from Pressman, 1994, p242

- Organizational Units

% that are relevant to the application
>E.g. division, group, team, etfc.

- Places
% ..that establish the context of the

problem being modeled
>E.g. manufacturing floor, loading
dock, etc.

- Structures

% that define a class or assembly of

objects
>E.g. sensors, four-wheeled vehicles,
computers, etfc.

Some things cannot be objects:
% procedures (e.g. print, invert, etc)
% attributes (e.g. blue, 50Mb, etc)

© 2000-2003, Steve Easterbrook

18

#

%’3 University of Toronto

)

&

Department of Computer Science

Selecfing ObJecTs

Source: Adapted Pressman, 199%, p244

- Need to choose which candidate objects to include

in the analysis

% Coad & Yourdon suggest each object should satisfy (most of) the following
criteria:

> Retained information: Does the system need to remember information about this
object?

> Needed Services: Does the object have identifiable operations that change the
values of its attributes?

> Multiple Attributes: If the object only has one attribute, it may be better
represented as an attribute of another object

» Common Attributes: Does the object have attributes that are shared with all
occurrences of the object?

» Common Operations: Does the object have operations that are shared with all
occurrences of the object?

% Note: External entities that produce or consume information essential to
the system are nearly always objects
% Many candidate objects will be eliminated or combined during modeling

© 2000-2003, Steve Easterbrook 19

i

%’3 University of Toronto

D)

&

Department of Computer Science

Variants

- Coad-Yourdon

% Developed in the late 80's
% Five-step analysis method

- Shlaer-Mellor

% Developed in the late 80's
% Emphasizes modeling information and state, rather than object interfaces

- Fusion
% Second generation OO method
% Introduced use-cases

- Unified Modeling Language (UML)
% Third generation OO method
% An attempt to combine advantages of previous methods

© 2000-2003, Steve Easterbrook 20

10

& University of Toronto Department of Computer Science

&

Coad-Yourdon

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99

- Five Step Process:

1. Identify Objects & Classes (i.e. 'is_a’ relationships)
2. Identify Structures (i.e. ‘part_of’ relationships)
3. Define Subjects
» A more abstract view of a large collection of objects
> Each classification and assembly structure become one subject

» Each remaining singleton object becomes a subject (although if there a many of
these, look for more structure!)

» Subject Diagram shows only the subjects and their interactions
4. Define Attributes and instance connections
5a. Define services - 3 types:
» Occur (create, connect, access, release) These are omitted from the model as
every object has them
» Calculate (when a calculated result from one object is needed by another)
» Monitor (when an object monitors for a condition or event)
5b. Define message connections
» These show how services of one object are used by another
» Shown as dotted lines on object and subject diagrams
> Each message may contain parameters

© 2000-2003, Steve Easterbrook 21

& University of Toronto Department of Computer Science

Coad Object diagrams
ob J ect Source: Adapted from Davis, 1990, p67-68
(.)
patient
patient e One-tg-one
? Date of Birth
attrib Name services optiorgal .
K >Date of Birth P HelghT
Height el
Weight)
classificgtion [$ assemb) One-to-mapy
mandaK
I e
In-patient Out-patient heart kidney eyes
Room Los V'F'T Natural/artif} | Natural/artiff | Natural/artif
Bed nex'r'v!sﬁr Orig/implant | | Orig/implant Vision
Physician physician normal bpm number number
— ~———— \ J\ J \ y

© 2000-2003, Steve Easterbrook

University of Toronto

Department of Computer Science

% Information Model

Shlaer-Mellor

- Three analysis models:

> models objects, relationships, and attributes of objects and relationships
> uses associative objects to represent relationships between other objects.
E o title’ ic on ohiect that represents the relationship between ‘owner' and ‘car’

1. HOME

1. HOME (H)
address owns
Unit at address |€&

- square feet

Is owned\b(OWNER (HO)
“Z| * Owner name
- address

- property tax fee

Identifier /

Associative Object

% State model

N
1. OWNERSHIP~O)

* Address (R1)
* Unit at Address (Rl}\One or more
* Owner name (R1)

Exactly one
- Date purchased

% Process model

> Uses StateCharts to show the lifecycle of each object
> Each object may be continuous or born-and-die (object is created & destroyed)

> representation of each service (‘action’) of an object
> Uses standard Dataflow Diagrams to show information used

© 2000-2003, Steve Easterbrook

University of Toronto

Department of Computer Science

- Combines several OO
methods

- Analysis phase:
% Object model
> like Shlaer-Mellor
% Operation model
> formal definition of each operation,
> including pre- and post- conditions
% Lifecycle model
> specifies admissible sequences of
interactions between system &
environment
% Interaction model
> = operation model + lifecycle model

- Message Sequence Charts
% Used in the interaction model

Fusion

Example Message Sequence Chart

User ATM Bank

Insert Card
_Prompt for PIN#
Type PIN#

Req Validationy

_Confirm Valid
Display Menu |

Regquest Cash >
Eromgt for amount

Enter amount

Sufficient funds? |
L
_Confirm funds

¢ Dispense Cash |™

Withdraw fundsy
L

Print Receipt

¢ Display Menu
End Transactiog'

Return Card

l

© 2000-2003, Steve Easterbrook

12

s . .
% University of Toronto Department of Computer Science

@ Unified Modeling Language

- Third generation OO method

% Booch, Rumbaugh & Jacobson are principal authors
> Still in development
> Attempt to standardize the proliferation of OO variants

% Is purely a notation
» No modeling method associated with it!

% But has been accepted as a standard for OO modeling
> But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

- Has a standardized meta-model

% Use case diagrams (see lecture 3)

% Class diagrams

% Message sequence charts

% Activity diagrams

% State Diagrams (uses Harel's statecharts)
% Module Diagrams

% Platform diagrams

© 2000-2003, Steve Easterbrook 25
-+ _University of Toronto Department of Computer Science
Class diagrams and associations
Multiplicit Multiplicit
A client has A staff memb;r has Class Name
exactly one staffmember zero or more clients on —
as a contact person Name His/her clientList
of the
association 'Clivent
:StaffMember
v | companyAddress
staffName 1 liaises with 0..* | companyEmail
staff# - — companyFax
staffStartDate contact > ClientList| companyName
person /‘ companyTelephone
|_—»
Direction ! 4
irec
TS Methods Attributes
The “liaises with Methods go E ﬁ f
association should be h but 9 iﬁ mlem T‘r °
Role read in this direction ere (but none Is class has
ey . identified yet) these attributes
The staffmember's Role
role in this association The clients' role
is as a contact person in this association
is as a clientList
© 2000-2003, Steve Easterbrook 26

13

%‘} University of Toronto Department of Computer Science

v Class Stereotypes

Source: Examples from Bennett, McRobb 002

- Boundary Classes

<<boundary>>

% Model the interactions between the User Intertace AddAdvertUl| N
system and its actors _— FU
> Mainly used for interface design §f;g';§;§,?f”

selectClient() User Interface::AddAdvertU!

salectCampaign()

- Entity Classes P

% The information represented by the Campaign
system title q

> Objects in the application domain that campaignStartDate
the system needs to know about cempaignFinishDate

" Campaign
getCampaignAdverts()
addNewAdvert()
- Control Classes
<<control>>
% Represent coordination, sequencing, Control: AddAdvert /<\
. . J
transactions, & control of other objects showClientCampaigns() __/
» E.g. one for each use case showCampaignAdverts() AdgAvert
createNewAdvert() ve
© 2000-2003, Steve Easterbrook 27
%‘} University of Toronto Department of Computer Science

Generalization and Aggregation

Source: Examples from Bennett, McRobb & Fari

- Generalization
% Subclasses inherit attributes, associations, & operations from the superclass
% A subclass may override an inherited aspect

- Aggregation
% This is the "Has-a" or "Whole/part” relationship Campaign

- Composifion i Kqggr‘egcn‘i on

% Strong form of aggregation that implies ownership:
>if the whole is removed from the model, so is the part.
>the whole is responsible for the disposition of its parts 0.

AdvertCopy

generalization

AdvertGraphic NewspaperAdvert TelevisionAdvert

 ~~composition

AdvertPhotograph

e

© 2000-2003, Steve Easterbrook 28

14

University of Toronto

Department of Computer Science

&

Example Sequence Diagram
i i participating /!'(
e object T
Initiator Staff Scheduler Participant
:Person :Person :Person :Person
Call() ; Respond() iteration
{ What'sup?()
Bl H : :
i Give mtg details() N
:! + [for all participants] *Inform() H ;-
3 : i Acknowledge() : :
(1) = :
i [for all participants] *Remind() : i
: 9 Acknowledge() : :
COndiTiOF:l -‘ Prompt()
: : »:
N : Show schedule() :
i [decision=0K] ScheduleOK’ed() »
[for all participants
: : $*Inform()

© 2000-2003, Steve Easterbrook

University of Toronto

Department of Computer Science

Statecharts

:person %

age

havebirthday()
[age < 18]

havebirthday()
[age = 18]
y

havebirthday(
[age < 65] ad

havebirthday()
[age = 65]
v

havebirthday(

senior

havebirthday()
Q—»‘ unborn

:person o

dateOfBirth
dateOfDeath

recordBirth()
setDOB()
recordDeath()
setDateofDeath()

recordBirth()
y/setDOB()

A
—| child

when
v[nowyear-birthyear>18]
—| adult

when

v[nowyear-birthyear>65]
senior

recordDeath()
/setDateofDeath()

deceased @

© 2000-2003, Steve Easterbrook

15

University of Toronto

createRecord()

/ adult \

Hierarchical Statecharts

registerBirth()/
setDateOfBirth()

registerDeath()

child
"

when
v[age>17]

A 4
. when
working age lage>65] m deceased

L’ - partnered

\

a registerDeath() whend when
widowed |« [addr=| ([addr
spouse.addr] J 'spouse.addr

spouse. married registerDeath()

q registerDivorce(
divorced separated

\A

k | regis

-

erMarriage()/setSpouse() /

Department of Computer Science

© 2000-2003, Steve Easterbrook

31

University of Toronto

Evaluation of OOA

- Advantages of OO analysis for RE

% Fits well with the use of OO for design and implementation
» Transition from OOA to OOD ‘smoother’ than from SA to SD (but is it?)

% Removes emphasis on functions as a way of structuring the analysis

% Avoids the fragmentary nature of structured analysis
> object-orientation is a coherent way of understanding the world

- Disadvantages

% Emphasis on objects brings an emphasis on static modeling
> although later variants have introduced dynamic models
% Not clear that the modeling primitives are appropriate
> are , and really the things we need to model in RE?
% Strong temptation to do design rather than problem analysis
% Fragmentation of the analysis
> E.g. reliance on use-cases means there is no “big picture” of the user's needs

% Too much marketing hypel!
> and false claims - e.g. no evidence that objects are a more natural way to think

Department of Computer Science

© 2000-2003, Steve Easterbrook

32

16

