
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 6: Requirements Modeling II
Last Week:

Modeling and Analysis (I)
General Modeling Issues

Modeling Goals, Organizations,
and Non-Functional Requirements

Last Week:
Modeling and Analysis (I)
General Modeling Issues

Modeling Goals, Organizations,
and Non-Functional Requirements

Next Week:
Modeling and Analysis (III)
Formal Modeling Techniques

Formal Reasoning

Next Week:
Modeling and Analysis (III)
Formal Modeling Techniques

Formal Reasoning

This Week:
Modeling and Analysis (II)

Modeling Functionality
Structured Analysis

Object Oriented Analysis

This Week:
Modeling and Analysis (II)

Modeling Functionality
Structured Analysis

Object Oriented Analysis

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Structured Analysis
‹ Definition

ƒ Structured Analysis is a data-oriented approach to conceptual modeling
ƒ Common feature is the centrality of the dataflow diagram
ƒMainly used for information systems

ÿ variants have been adapted for real-time systems

‹ Modeling process:

ƒModel of current physical system only useful as basis for the logical model
ƒ Distinction between indicative and optative models is very important:

ÿ Must understand which requirements are needed to continue current functionality,
and which are new with the updated system

2. Current
logical system

1. Current
physical system

3. New logical
system

4. New
physical system

Abstract
(essential functions)

Concrete
(detailed model)

indicative
(existing system)

optative
(new system)

2

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Central Concepts
‹ Process (data transformation)

ƒ activities that transform data
ƒ related by dataflows to other

processes, data store, and external
entities.

‹ Data flow
ƒ indicate passage of data from output

of one entitie to input of another
ƒ represent a data group or data

element

‹ Data store
ƒ a place where data is held for later

use
ƒ Data stores are passive: no

transformations are performed on
the data

‹ External entity
ƒ An activity outside the target system
ƒ Acts as source or destination for

dataflows that cross the system
boundary

ƒ External entities cannot interact
directly with data stores

‹ Data group
ƒ A cluster of data represented as a

single dataflow
ƒ Consists of lower level data groups,

or individual elements

‹ Data element
ƒ a basic unit of data

Source: Adapted from Svoboda, 1990, p257

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modeling tools
‹ Data flow diagram

ƒ Context diagram (“Level 0”)
ÿ whole system as a single process

ƒ intermediate level DFDs decompose each process
ƒ functional primitives are processes that cannot be decomposed further

‹ Data dictionary
ƒ Defines each data element and data group
ƒ Use of BNF to define structure of data groups

‹ Primitive Process Specification
ƒ Each functional primitive has a “mini-spec”
ƒ these define its essential procedural steps
ƒ Expressed in English narrative, or some form of pseudo-code

‹ Structured Walkthrough

Source: Adapted from Svoboda, 1990, p258-263

3

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Key
process

dataflow (no
control implied)

data store

external entity

system boundary

1.
determine
form of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Timetables

Fare tables

customer

booking
system

booking
system customer

travel
request

customer
query

schedule

proposed
itinerary proposed

itinerary

booked
itinerary

fares

tickets

booking
confirmation

booking
request

Dataflow Diagrams (DFDs)

‹ Notes:
ƒ every process, flow, and datastore must be labeled
ƒ representation is hierarchical

ÿeach process will be represented separately as a lower level DFD
ƒ processes are normally numbered for cross reference
ƒ processes transform data

ÿcan’t have the same data flowing out of a process as flows into it

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Level n: subprocesses

3.1
request
res.

3.2.
log 3.3.

track

booking
system

Request id. Request id.

timestamps booking
confirmation

booking
request

preferences

Level n: subprocesses

3.1
request
res.

3.2.
log 3.3.

track

booking
system

Request id. Request id.

timestamps booking
confirmation

booking
request

preferences

Level 2: subprocesses

3.1
request
reser-
vations

3.2.
confirm
booking

3.3.
collate

confirm-
ations

booking
systemReq id.

Req id.

seat
data

booking
confirmation

booking
request

seating prefs

Hierarchies of DFDs

ticket
system

booking
system

customer
tickets

booking
confirmation

booking
request

customer
query

Level 0: Context Diagram

check
schedule

issue
tickets

Proposed
itinerary

booked
itinerary

booking
request

1.
determine
form of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Timetables

Fare tables

customer

booking
system

customer

travel
request

customer
query

schedule
proposed
itinerary proposed

itinerary

booked
itinerary

fares

tickets
booking

confirmation

booking
request

Level 1: Whole System

4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Data Dictionary & Process Specs

Example Data Dictionary
Mailing Label =

customer_name +
customer_address

customer_name =
customer_last_name +
customer_first_name +
customer_middle_initial

customer_address =
local_address +
community_address + zip_code

local_address =
house_number + street_name +
(apt_number)

community address =
city_name + [state_name |
province_name]

Example Data Dictionary
Mailing Label =

customer_name +
customer_address

customer_name =
customer_last_name +
customer_first_name +
customer_middle_initial

customer_address =
local_address +
community_address + zip_code

local_address =
house_number + street_name +
(apt_number)

community address =
city_name + [state_name |
province_name]

Source: Adapted from Svoboda, 1990, p262-4

Example Mini-Spec
FOR EACH Shipped-order-detail

GET customer-name + customer-
address
FOR EACH part-shipped

GET retail-price
MULTIPLY retail-price by

quantity-shipped
TO OBTAIN total-this-order

CALCULATE shipping-and-handling
ADD shipping-and-handling TO

total-this-order
TO OBTAIN total-this-invoice

PRINT invoice

Example Mini-Spec
FOR EACH Shipped-order-detail

GET customer-name + customer-
address
FOR EACH part-shipped

GET retail-price
MULTIPLY retail-price by

quantity-shipped
TO OBTAIN total-this-order

CALCULATE shipping-and-handling
ADD shipping-and-handling TO

total-this-order
TO OBTAIN total-this-invoice

PRINT invoice

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

DFD variants

ActivityIncoming
data

Performing
mechanism

Control
data

Transformed
data

Name
ID

Name

Name
ID

NameID

Source: Adapted from Svoboda, 1990, p264-5

‹ Structured Analysis and Design Technique
(SADT)
ƒ Developed by Doug Ross in the mid-70’s
ƒ Uses activity diagrams rather than dataflow diagrams
ƒ Distinguishes control data from processing data

‹ Structured Analysis and System
Specification (SASS)
ƒ Developed by Yourdon and DeMarco in the mid-70’s
ƒ ‘classic’ structured analysis

‹ Structured System Analysis (SSA)
ƒ Developed by Gane and Sarson
ƒ Notation similar to Yourdon & DeMarco
ƒ Adds data access diagrams to describe contents of

data stores

‹ Structured Requirements Definition (SRD)
ƒ Developed by Ken Orr in the mid-70’s
ƒ Introduces the idea of building separate models for

each perspective and then merging them

5

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SASS methodology
1. Study current environment

ƒ draw DFD to show how data flows through current organization
ƒ label bubbles with names of organizational units or individuals

2. Derive logical equivalents
ƒ replace names (of people, roles,…) with action verbs
ƒ merge bubbles that show the same logical function
ƒ delete bubbles that don’t transform data

3. Model new logical system
ƒModify logical DFD to show how info will flow once new system is in place

ÿ …but don’t distinguish (yet) which components will be automated

4. Define a number of automation alternatives
ƒ document each as a physical DFD
ƒ Analyze each with cost/benefit trade-off
ƒ Select one for implementation
ƒWrite the specification

Source: Adapted from Davis, 1990, p83-86

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Alternative Process Model: SRD
1. Define a user-level DFD

ƒ interview each relevant individual in the current organization
ÿ actually a role, rather than an individual

ƒ Identify the inputs and outputs for that individual
ƒ Draw an ‘entity diagram’ showing these inputs and outputs

2. Define a combined user-level DFD
ƒMerge all alike bubbles to create a single diagram
ƒ Resolve inconsistencies between perspective

3. Define the application-level DFD
ƒ Draw the system boundary on the combined user-level DFD
ƒ Then collapse everything within the boundary into a single process

4. Define the application-level functions
ƒ label inputs and outputs to show the order of processing for each function

ÿ I.e. for function A, label the flows that take part in A as A1, A2, A3,...

Source: Adapted from Davis, 1990, p72-75

6

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Later developments
‹ Later work recognized that:

ƒ development of both current physical and current logical models is overkill
ƒ top down development doesn’t always work well for complex systems
ƒ entity-relationship diagrams are useful for capturing complex data

‹ Structured Analysis / Real Time (SA/RT)
ƒ Developed by Ward and Mellor in the mid-80’s
ƒ Extends structured analysis for real-time systems

ÿ Adds control flow, state diagrams, and entity-relationship models

‹ Modern Structured Analysis
ƒ Captured by Yourdon in his 1989 book
ƒ Uses two models: the environmental model and the behavioral model

ÿ together these comprise the essential model
ƒ Includes plenty of advice culled from many years experience with structured

analysis

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Real-time extensions

Control
line

conditions
3.1 material

inlet
3.3

Controlling
tension

3.4

Monitor
Tension

3.5

Report
line

status
3.2

Tension settings table

Enable

Enable
Enable

Enable
Disable

DisableDisable

Disable

Line
tension

Line
status

Tension
inlet control

Current
tension

Current
gauge

Line
tension

Tension off
Tension ok

Inlet
control

Source: Adapted from Svoboda, 1990, p269

name
ID

name

Control
Transfor-
mation

Control flow
(continuous)
Control
Store

Control flow
(discrete)

KEY

7

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Evaluation of SA techniques
‹ Advantages

ƒ Facilitates communication.
ƒ Notations are easy to learn, and don’t require software expertise
ƒ Clear definition of system boundary
ƒ Use of abstraction and partitioning
ƒ Automated tool support

ÿ e.g. CASE tools provide automated consistency checking

‹ Disadvantages
ƒ Little use of projection

ÿ even SRD’s ‘perspectives’ are not really projection
ƒ Confusion between modeling the problem and modeling the solution

ÿ most of these techniques arose as design techniques
ƒ These approaches model the system, but not its application domain
ƒ Timing issues are completely invisible

Source: Adapted from Davis, 1990, p174

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Object Oriented Analysis
‹ Background

ƒModel the requirements in terms of objects and the services they provide
ƒ Grew out of object oriented design

ÿ OOD partitions a program in a different way from structured programming
ÿ Result was a poor fit moving from Structured Analysis to Object Oriented Design

‹ Motivation
ƒ OO is (claimed to be) more ‘natural’

ÿ As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged

ÿ Hence a structured analysis model will get out of date, but an object oriented
model will not…

ÿ …hence the claim that object-oriented designs are more maintainable
ƒ OO emphasizes importance of well-defined interfaces between objects

ÿ compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

8

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modeling primitives
‹ Objects

ƒ an entity that has state, attributes
and services

ƒ Interested in problem-domain objects
for requirements analysis

‹ Classes
ƒ Provide a way of grouping objects

with similar attributes or services
ƒ Classes form an abstraction hierarchy

though ‘is_a’ relationships

‹ Attributes
ƒ Together represent an object’s state
ƒ May specify type, visibility and

modifiability of each attribute

‹ Relationships
ƒ ‘is_a’ classification relations
ƒ ‘part_of’ assembly relationships

‹ Methods (or ‘Services’, ‘Functions’)
ƒ These are the operations that all

objects in a class can do…
ÿ…when called on to do so by other
objects

ƒ E.g. Constructors/Destructors
ÿif objects are created dynamically

ƒ E.g. Set/Get
ÿaccess to the object’s state

‹ Message Passing
ƒ How objects invoke services of other

objects

‹ Use Cases/Scenarios
ƒ Sequences of message passing

between objects
ƒ Represent specific interactions

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Key Principles
‹ Classification (using inheritance)

ƒ Classes capture commonalities of a number of objects
ÿ Each subclass inherits attributes and methods from its parent
ÿ Forms an ‘is_a’ hierarchy

ƒ Child class may ‘specialize’ the parent class
ÿ by adding additional attributes & methods
ÿ by replacing an inherited attribute or method with another

ƒMultiple inheritance is possible where a class is subclass of several
different superclasses.

‹ Information Hiding
ƒ internal state of an object need not be visible to external viewers
ƒ Objects can encapsulate other objects, and keep their services internal

ÿ useful for forming abstractions

‹ Aggregation
ƒ Can describe relationships between parts and the whole ‘

9

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Information Hiding

System Model

Service 1

Service 2

Service 3

Service 4

Service 5

Service 6

Method 1

Method 2

Object 1

Method 1

Method 2

Object 3

Method 1

Method 2

Object 2

‹ Objects can contain other objects
ƒ (compare with hierarchies of dataflow diagram in Structured Analysis)

18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Nearly anything can be an object…
‹ External Entities

ƒ …that interact with the system
being modeled
ÿE.g. people, devices, other systems

‹ Things
ƒ …that are part of the domain being

modeled
ÿE.g. reports, displays, signals, etc.

‹ Occurrences or Events
ƒ …that occur in the context of the

system
ÿE.g. transfer of resources, a control
action, etc.

‹ Roles
ƒ played by people who interact with

the system

‹ Organizational Units
ƒ that are relevant to the application

ÿE.g. division, group, team, etc.

‹ Places
ƒ …that establish the context of the

problem being modeled
ÿE.g. manufacturing floor, loading
dock, etc.

‹ Structures
ƒ that define a class or assembly of

objects
ÿE.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
ƒ procedures (e.g. print, invert, etc)
ƒ attributes (e.g. blue, 50Mb, etc)

Source: Adapted from Pressman, 1994, p242

10

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Selecting Objects
‹ Need to choose which candidate objects to include

in the analysis
ƒ Coad & Yourdon suggest each object should satisfy (most of) the following

criteria:
ÿ Retained information: Does the system need to remember information about this

object?
ÿ Needed Services: Does the object have identifiable operations that change the

values of its attributes?
ÿ Multiple Attributes: If the object only has one attribute, it may be better

represented as an attribute of another object
ÿ Common Attributes: Does the object have attributes that are shared with all

occurrences of the object?
ÿ Common Operations: Does the object have operations that are shared with all

occurrences of the object?
ƒ Note: External entities that produce or consume information essential to

the system are nearly always objects
ƒMany candidate objects will be eliminated or combined during modeling

Source: Adapted from Pressman, 1994, p244

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Variants
‹ Coad-Yourdon

ƒ Developed in the late 80’s
ƒ Five-step analysis method

‹ Shlaer-Mellor
ƒ Developed in the late 80’s
ƒ Emphasizes modeling information and state, rather than object interfaces

‹ Fusion
ƒ Second generation OO method
ƒ Introduced use-cases

‹ Unified Modeling Language (UML)
ƒ Third generation OO method
ƒ An attempt to combine advantages of previous methods

11

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Coad-Yourdon
‹ Five Step Process:

1. Identify Objects & Classes (i.e. ‘is_a’ relationships)
2. Identify Structures (i.e. ‘part_of’ relationships)
3. Define Subjects

ÿ A more abstract view of a large collection of objects
ÿ Each classification and assembly structure become one subject
ÿ Each remaining singleton object becomes a subject (although if there a many of

these, look for more structure!)
ÿ Subject Diagram shows only the subjects and their interactions

4. Define Attributes and instance connections
5a. Define services - 3 types:

ÿ Occur (create, connect, access, release) These are omitted from the model as
every object has them

ÿ Calculate (when a calculated result from one object is needed by another)
ÿ Monitor (when an object monitors for a condition or event)

5b. Define message connections
ÿ These show how services of one object are used by another
ÿ Shown as dotted lines on object and subject diagrams
ÿ Each message may contain parameters

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99

22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Coad Object diagrams

patient
Name
Date of Birth
Height
Weight

In-patient
Room
Bed
Physician

Out-patient
Last visit
next visit
physician

patient
Name
Date of Birth
Height
Weight

heart
Natural/artif.
Orig/implant
normal bpm

eyes
Natural/artif.
Vision
number

kidney
Natural/artif.
Orig/implant
number

classification assembly

object

attributes optional
One-to-one

One-to-many

mandatory

services

Source: Adapted from Davis, 1990, p67-68

12

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Shlaer-Mellor
‹ Three analysis models:

ƒ Information Model
ÿ models objects, relationships, and attributes of objects and relationships
ÿ uses associative objects to represent relationships between other objects.
ÿ E.g. ‘title’ is an object that represents the relationship between ‘owner’ and ‘car’

ƒ State model
ÿ Uses StateCharts to show the lifecycle of each object
ÿ Each object may be continuous or born-and-die (object is created & destroyed)

ƒ Process model
ÿ representation of each service (‘action’) of an object
ÿ Uses standard Dataflow Diagrams to show information used

1. HOME (H)
* address
* Unit at address
• square feet
• property tax fee

1. HOME
OWNER (HO)
* Owner name
• address

1. OWNERSHIP (O)
* Address (R1)
* Unit at Address (R1)
* Owner name (R1)
• Date purchased

owns Is owned by

Identifier

Associative Object
One or more

Exactly one

24

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Fusion
‹ Combines several OO

methods

‹ Analysis phase:
ƒ Object model
ÿ like Shlaer-Mellor

ƒ Operation model
ÿ formal definition of each operation,
ÿ including pre- and post- conditions

ƒ Lifecycle model
ÿ specifies admissible sequences of

interactions between system &
environment

ƒ Interaction model
ÿ = operation model + lifecycle model

‹ Message Sequence Charts
ƒ Used in the interaction model

Example Message Sequence Chart

User ATM Bank

Insert Card

Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash

Prompt for amount

Enter amount
Sufficient funds?

Confirm funds
Dispense Cash

Display Menu

End Transaction

Withdraw funds

Return Card

Print Receipt

13

25

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Unified Modeling Language
‹ Third generation OO method

ƒ Booch, Rumbaugh & Jacobson are principal authors
ÿ Still in development
ÿ Attempt to standardize the proliferation of OO variants

ƒ Is purely a notation
ÿ No modeling method associated with it!

ƒ But has been accepted as a standard for OO modeling
ÿ But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

‹ Has a standardized meta-model
ƒ Use case diagrams (see lecture 3)
ƒ Class diagrams
ƒMessage sequence charts
ƒ Activity diagrams
ƒ State Diagrams (uses Harel’s statecharts)
ƒModule Diagrams
ƒ Platform diagrams

26

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Class diagrams and associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

Attributes
Each member of

this class has
these attributes

Class Name

Methods
Methods go

here (but none
identified yet)

14

27

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Class Stereotypes
‹ Boundary Classes

ƒModel the interactions between the
system and its actors
ÿ Mainly used for interface design

‹ Entity Classes
ƒ The information represented by the

system
ÿ Objects in the application domain that

the system needs to know about

‹ Control Classes
ƒ Represent coordination, sequencing,

transactions, & control of other objects
ÿ E.g. one for each use case

Source: Examples from Bennett, McRobb & Farmer, 2002

28

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Generalization and Aggregation
‹ Generalization

ƒ Subclasses inherit attributes, associations, & operations from the superclass
ƒ A subclass may override an inherited aspect

‹ Aggregation
ƒ This is the “Has-a” or “Whole/part” relationship

‹ Composition
ƒ Strong form of aggregation that implies ownership:

ÿif the whole is removed from the model, so is the part.
ÿthe whole is responsible for the disposition of its parts

aggregation

generalization

composition

Source: Examples from Bennett, McRobb & Farmer, 2002

15

29

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example Sequence Diagram

Call() Respond()

What’s up?()

Give mtg details()
[for all participants] *Inform()

[for all participants] *Remind()

Prompt()

Show schedule()

[decision=OK] ScheduleOK’ed()

Initiator
:Person

Participant
:Person

[for all participants]
*Inform()

Staff
:Person

Scheduler
:Person

Acknowledge()

Acknowledge()
condition

iteration

participating
object

Tim
e

30

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Statecharts

child

adult

senior

havebirthday()
[age = 18]

havebirthday()
[age = 65]

havebirthday()
[age < 18]

havebirthday()
[age < 65]

havebirthday()

child

adult

senior

when
[nowyear-birthyear>18]

when
[nowyear-birthyear>65]

unborn

deceased

recordBirth()
/setDOB()

recordDeath()
/setDateofDeath()

:person
dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

:person
age

havebirthday()

16

31

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

adult

single partnered

Hierarchical Statecharts

child

working age senior

unmarried

married

divorced

widowed

separated

deceased

registerDeath()

when
[age>17]

unborn
registerBirth()/
setDateOfBirth()

when
[age>65]

registerMarriage()/setSpouse()

when
[! ! ! !addr ≠
 spouse.addr]

registerDivorce()

spouse.
registerDeath() when

[! ! ! !addr =
 spouse.addr]

registerDeath()

createRecord()

32

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Evaluation of OOA
‹ Advantages of OO analysis for RE

ƒ Fits well with the use of OO for design and implementation
ÿ Transition from OOA to OOD ‘smoother’ than from SA to SD (but is it?)

ƒ Removes emphasis on functions as a way of structuring the analysis
ƒ Avoids the fragmentary nature of structured analysis

ÿ object-orientation is a coherent way of understanding the world

‹ Disadvantages
ƒ Emphasis on objects brings an emphasis on static modeling

ÿ although later variants have introduced dynamic models
ƒ Not clear that the modeling primitives are appropriate

ÿ are objects, services and relationships really the things we need to model in RE?
ƒ Strong temptation to do design rather than problem analysis
ƒ Fragmentation of the analysis

ÿ E.g. reliance on use-cases means there is no “big picture” of the user’s needs
ƒ Too much marketing hype!

ÿ and false claims - e.g. no evidence that objects are a more natural way to think

