
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 8: Communicating Requirements
Last Week:

Modeling and Analysis (III)
Formal Modeling Techniques

Program Spec. vs. Reqts Modeling
RSML, SCR, RML, Telos, Albert II

Lightweight formal modeling

Last Week:
Modeling and Analysis (III)
Formal Modeling Techniques

Program Spec. vs. Reqts Modeling
RSML, SCR, RML, Telos, Albert II

Lightweight formal modeling

Next Week:
Agreeing Requirements (I)

Validation
Reviews and Inspections

Prototyping

Next Week:
Agreeing Requirements (I)

Validation
Reviews and Inspections

Prototyping

This Week:
Communicating Requirements

the Software Requirements Specification (SRS)
Documentation Standards
Requirements Traceability

This Week:
Communicating Requirements

the Software Requirements Specification (SRS)
Documentation Standards
Requirements Traceability

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Software Requirements Specification

‹ Purpose
ƒ Communicates an understanding of

the requirements
ÿexplains both the application domain
and the system to be developed

ƒ Contractual
ÿMay be legally binding!
ÿExpresses an agreement and a
commitment

ƒ Baseline for evaluating subsequent
products
ÿsupports system testing, verification
and validation activities
ÿshould contain enough information to
verify whether the delivered system
meets requirements

ƒ Baseline for change control
ÿrequirements change, software evolves

‹ Audience
ƒ Users, Purchasers

ÿMost interested in system requirements
ÿNot generally interested in detailed
software requirements

ƒ Systems Analysts, Requirements
Analysts
ÿWrite various specifications that inter-
relate

ƒ Developers, Programmers
ÿHave to implement the requirements

ƒ Testers
ÿDetermine that the requirements have
been met

ƒ Project Managers
ÿMeasure and control the analysis and
development processes

‹ How do we communicate the Requirements to others?
ƒ It is common practice to capture them in an SRS

ÿ But an SRS doesn’t need to be a single paper document...

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Appropriate Specification
‹ Consider two different projects:

A) Small project, 1 programmer, 6 months work
programmer talks to customer, then writes up a 5-page memo

B) Large project, 50 programmers, 2 years work
team of analysts model the requirements, then document them in a 500-page SRS

Project A Project B

Purpose of spec?
Crystalizes programmer’s
understanding; feedback

to customer

Build-to document; must
contain enough detail for

all the programmers

Management
view?

Spec is irrelevant; have
already allocated

resources

Will use the spec to
estimate resource needs
and plan the development

Readers?
Primary: Spec author;
Secondary: Customer

Primary: all programmers
+ V&V team, managers;
Secondary: customers

Source: Adapted from Blum 1992, p154-5

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

A complication: Procurement
‹ An ‘SRS’ may be written by…

ƒ …the procurer:
ÿ so the SRS is really a call for proposals
ÿ Must be general enough to yield a good selection of bids…
ÿ …and specific enough to exclude unreasonable bids

ƒ …the bidders:
ÿ Represents a proposal to implement a system to meet the CfP
ÿ must be specific enough to demonstrate feasibility and technical competence
ÿ …and general enough to avoid over-commitment

ƒ …the selected developer:
ÿ reflects the developer’s understanding of the customers needs
ÿ forms the basis for evaluation of contractual performance

ƒ …or by an independent RE contractor!

‹ Choice over what point to compete the contract
ƒ Early (conceptual stage)

ÿ can only evaluate bids on apparent competence & ability
ƒ Late (detailed specification stage)

ÿ more work for procurer; appropriate RE expertise may not be available in-house
ƒ IEEE Standard recommends SRS jointly developed by procurer & developer



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Desiderata for Specifications
‹ Valid (or “correct”)

ƒ Expresses only the real needs of the
stakeholders (customers, users,…)

‹ Complete
ƒ Specifies all the things the system

must do
ƒ ...and all the things it must not do!
ƒ Conceptual Completeness

ÿ E.g. responses to all classes of input
ƒ Structural  Completeness

ÿ E.g. no TBDs!!!

‹ Consistent
ƒ Doesn’t contradict itself

ÿ I.e. is satisfiable
ƒ Uses all terms consistently
ƒ Note: inconsistency can be hard to

detect
ÿ especially in timing aspects and

condition logic
ÿ (Formal specification can help)

‹ Necessary
ƒ Doesn’t contain anything that isn’t

“required”

‹ Unambiguous
ƒ Every statement can be read in

exactly one way
ƒ Clearly defines confusing terms

ÿ E.g. in a glossary

‹ Verifiable
ƒ A process exists to test satisfaction

of each requirement
ƒ “every requirement is specified

behaviorally”

‹ Understandable (Clear)
ƒ E.g. by non-computer specialists

‹ Modifiable
ƒ Can be changed without difficulty

ÿ Good structure and cross-referencing
ƒ It must be kept up to date!

Source: Adapted from Blum 1992, pp164-5 and the IEEE-STD-830-1993

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

There is no Perfect SRS!

incompleteincompleteincomplete

not understandablenot understandablenot understandable

ambiguousambiguousambiguous

redundantredundantredundant inconsistentinconsistentinconsistent

add
explanations

resolve

reduce

expand expand
condense

fo
rm

al
iz

e

…etc!

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Kovitz, 1999

Typical mistakes
ƒ Noise

ÿ the presence of text that carries no
relevant information to any feature of the
problem.

ƒ Silence
ÿ a feature that is not covered by any text.

ƒ Over-specification
ÿ text that describes a feature of the

solution, rather than the problem.
ƒ Contradiction

ÿ text that defines a single feature in a
number of incompatible ways.

ƒ Ambiguity
ÿ text that can be interpreted in at least two

different ways.
ƒ Forward reference

ÿ text that refers to a feature yet to be
defined.

ƒ Wishful thinking
ÿ text that defines a feature that cannot

possibly be validated.

ƒ Jigsaw puzzles
ÿ e.g. distributing requirements across a

document and then cross-referencing
ƒ Duckspeak requirements

ÿ Requirements that are only there to
conform to standards

ƒ Unnecessary invention of terminology
ÿ E.g., ‘the user input presentation function’,

‘airplane reservation data validation
function’

ƒ Inconsistent terminology
ÿ Inventing and then changing terminology

ƒ Putting the onus on the development
staff
ÿ i.e. making the reader work hard to

decipher the intent
ƒ Writing for the hostile reader

ÿ There are fewer of these than friendly
readers

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SRS should not include…
‹ Project development plans

ÿ cost, staffing, schedules, methods, tools, etc
ƒ Lifetime of SRS is until the software is made obsolete
ƒ Lifetime of development plans is much shorter

‹ Product assurance plans
ÿ CM, V&V, test, QA, etc

ƒ Different audiences
ƒ Different lifetimes

‹ Designs
ƒ Requirements and designs have different audiences
ƒ Analysis and design are different areas of expertise

ÿ I.e. requirements analysts shouldn’t do design!
ƒ Except where application domain constrains the design

ÿ e.g. limited communication between different subsystems for security reasons.

Source: Adapted fromDavis, 1990, p183



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Text Analysis to measure Quality
‹ Can do textual analysis of an

SRS
ƒ measure current practice
ƒ establish norms for an organisation

‹ E.g. NASA SEL used nine
quality indicators:
ƒ Imperatives

ÿidentified by words such as “shall”,
“must”, “is required”, etc.
ÿImperatives measure how explicit a
SRS is.

ƒ Continuances follow an imperative and
introduce requirements
ÿindicated by “below:”, “as follows:”
etc.
ÿmeasure the structure of an SRS.

ƒ Option
ÿindicated by words such as “can”,
“may”, “optionally” etc.
ÿmeasure how much latitude does an
SRS leave

ƒ Weak phrases
ÿcause uncertainty
ÿe.g. “adequate”, “as applicable” etc.

ƒ Directives
ÿindicated by tables, figures etc
ÿthese strengthen the quality of the
document

ƒ Size
ÿ…in terms of lines of text, indicators
and subjects
ÿroughly, the number of subjects for all
the imperatives

ƒ Text structure
ÿmeasures the number of statement
identifiers

ƒ Specification depth
ÿmeasures how deep are the subsections
of the SRS (e.g., 3.2.5.1)
ÿgives an indication of SRS structure.

ƒ Readability statistics
ÿe.g average number of syllables per
word, number of words per sentence
etc.

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Ambiguity Test
‹ Natural Language?

ƒ “The system shall report to the operator all faults that originate in critical
functions or that occur during execution of a critical sequence and for
which there is no fault recovery response.”

(adapted from the specifications for the international space station)

‹ Or a decision table?

Originate in critical functions F T F T F T F T

Occur during critical seqeunce F F T T F F T T

No fault recovery response F F F F T T T T

Report to operator?

Source: Adapted from Easterbrook & Callahan, 1997.

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Avoiding ambiguity
‹ Review natural language specs for ambiguity

ƒ use people with different backgrounds
ƒ include software people, domain specialists and user communities
ƒMust be an independent review (I.e. not by the authors!)

‹ Use a specification language
ƒ E.g. a restricted subset or stylized English
ƒ E.g. a semi-formal notation (graphical, tabular, etc)
ƒ E.g. a formal specification language (e.g. Z, VDM, SCR, …)

‹ Exploit redundancy
ƒ Restate a requirement to help the reader confirm her understanding
ƒ ...but clearly indicate the redundancy
ƒMay want to use a more formal notation for the re-statement

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SRS format and style
‹ Modifiability

ƒ well-structured, indexed, cross-referenced, etc.
ƒ redundancy should be avoided or must be clearly marked as such
ƒ An SRS is not modifiable if it is not traceable...

‹ Traceability
ƒ Backwards - the specification must be “traced”

ÿ each requirement traces back to a source or authority
ÿ e.g. a requirement in the system spec; a stakeholder; etc

ƒ Forwards - the specification must be “traceable”
ÿ each requirement will eventually trace forwards to parts of the design that

satisfy it
ÿ Hence we will need a way of referring to each requirement

ƒNote: traceability links are two-way
ÿ other documents will be traced into the SRS
ÿ Every requirement must have a unique label.

‹ Useful Annotations
ƒ E.g. relative necessity and relative stability

Source: Adapted from Davis, 1990, p192-5



4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Organizing the Requirements
‹ Need a logical organization for the document

ƒ IEEE standard offers different templates

‹ Example Structures - organize by…
ƒ …External stimulus or external situation

ÿ e.g., for an aircraft landing system, each different type of landing situation:
wind gusts, no fuel, short runway, etc

ƒ …System feature
ÿ e.g., for a telephone system: call forwarding, call blocking, conference call, etc

ƒ …System response
ÿ e.g., for a payroll system: generate pay-cheques, report costs, print tax info;

ƒ …External object
ÿ e.g. for a library information system, organize by book type

ƒ …User type
ÿ e.g. for a project support system: manager, technical staff, administrator, etc.

ƒ …Mode
ÿ e.g. for word processor: page layout mode, outline mode, text editing mode, etc

ƒ …Subsystem
ÿ e.g. for Agate case study: campaign management, staff management, etc.

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

IEEE Standard for SRS

1 Introduction
Purpose
Scope
Definitions, acronyms, abbreviations
Reference documents
Overview

2 Overall Description
Product perspective
Product functions
User characteristics
Constraints
Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

1 Introduction
Purpose
Scope
Definitions, acronyms, abbreviations
Reference documents
Overview

2 Overall Description
Product perspective
Product functions
User characteristics
Constraints
Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

Identifies the product, &
application domain

Describes contents and structure
of the remainder of the SRS

Describes all external interfaces:
system, user, hardware, software;
also operations and site adaptation,

and hardware constraints

Summary of major functions

Anything that will limit the
developer’s options (e.g. regulations,

reliability, criticality, hardware
limitations, parallelism, etc)

All the requirements go in here (i.e.
this is the body of the document).
IEEE STD provides 8 different

templates for this section

Source: Adapted from IEEE-STD-830-1993 See also, Blum 1992, p160

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

IEEE STD Section 3 (example)
3.1 External Interface

Requirements
3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces

3.2 Functional Requirements
this section organized by mode, user

class, feature, etc. For example:
3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1
…

3.2.2 Mode 2
3.2.1.1 Functional Requirement 1.1
…

...
3.2.2 Mode n

...

3.3 Performance Requirements
Remember to state this in measurable

terms!

3.4 Design Constraints
3.4.1 Standards compliance
3.4.2 Hardware limitations
etc.

3.5 Software System
Attributes

3.5.1 Reliability
3.5.2 Availability
3.5.3 Security
3.5.4 Maintainability
3.5.5 Portability

3.6 Other Requirements

Source: Adapted from IEEE-STD-830-1993. See also, Blum 1992, p160

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

MIL-STD-498
‹ MIL-STD-498 is the main US DoD standard for

software development and documentation
ƒ replaces DOD-STD-2167A and DOD-STD7935A

‹ Consists of:
ƒ a guidebook,
ƒ a list of process requirements
ƒ 22 Data Items Descriptions (DIDs)

‹ DIDs are the documents produced during software
development. e.g.
ƒOCD - Operational Concept Description
ƒ SSS - System/Subsystem Specification
ƒ SRS - Software Requirements Specification
ƒ IRS - Interface Requirements Specification
ƒ etc

Source: Adapted from MIL-STD-498



5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

System Structure
‹ MIL-STD-498 uses the following system structure:

System or Segment
(SSS)

System or Segment
(SSS)

System or Segment
(SSS)

CSCI
(SRS)

HWCI
(PIDS)

CSCI
(SRS)

CSCI
(SRS)

HWCI
(PIDS)

Interfaces
(IRS)

CSCI
(SRS)

CSCI = Computer Software
Configuration Item

HWCI = Hardware
Configuration Item

Source: Adapted from MIL-STD-498 18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SRS DID from MIL-STD-498
1 Scope

1.1 Identification
1.2 System Overview
1.3 Document Overview

2 Referenced Documents

3 Requirements
3.1 Required States and Modes
3.2 CSCI Capability Requirements

3.2.x Capability X…
3.3 CSCI External Interface

Requirements
3.3.1 Interface Identification and

diagrams
3.3.x Project Unique Identifier

3.4 CSCI Internal Interface
Requirements

3.5 CSCI Internal Data Requirements
3.6 Adaptation Requirements
3.7 Safety Requirements

3.8 Security and Privacy Requirements
3.9 CSCI Environment Requirements
3.10 Computer Resource Requirements
3.11 Software Quality Factors
3.12 Design and Implementation

Constraints
3.13 Personnel-related Requirements
3.14 Training-related Requirements
3.15 Logistics-related Requirements
3.16 Other Requirements
3.17 Packaging Requirements
3.18 Precedence and criticality of

Requirements

4 Qualification Provisions

5 Requirements Traceability

6 Notes

Appendices
Source: Adapted from MIL-STD-498

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Requirements Traceability

‹ Definition (DOD-STD-2167A):
“(1) The document in question contains or implements all applicable

stipulations in the predecessor document
(2) a given term, acronym, or abbreviation means the same thing in all

documents
(3) a given item or concept is referred to by the same name or description

in the documents
(4) all material in the successor document has its basis in the predecessor

document, that is, no untraceable material has been introduced
(5) the two documents do not contradict one another”

‹ In short:
ƒ A demonstration of completeness, necessity and consistency
ƒ a clear allocation/flowdown path (down through the document hierarchy)
ƒ a clear derivation path (up through the document hierarchy)

Source: Adapted from Palmer, 1996, p 367 20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Importance of Traceability
‹ Verification and Validation

ƒ assessing adequacy of test suite
ƒ assessing conformance to

requirements
ƒ assessing completeness, consistency,

impact analysis
ƒ assessing over- and under-design
ƒ investigating high level behavior

impact on detailed specifications
ƒ detecting requirements conflicts
ƒ checking consistency of decision

making across the lifecycle

‹ Maintenance
ƒ Assessing change requests
ƒ Tracing design rationale

‹ Document access
ƒ ability to find information quickly in

large documents

‹ Process visibility
ƒ ability to see how the software was

developed
ƒ provides an audit trail

‹ Management
ƒ change management
ƒ risk management
ƒ control of the development process

Source: Adapted from Palmer, 1996, p365



6

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Traceability Difficulties
‹ Cost

ƒ very little automated support
ƒ full traceability is very expensive and time-consuming

‹ Delayed gratification
ƒ the people defining traceability links are not the people who benefit from it

ÿ development vs. V&V
ƒmuch of the benefit comes late in the lifecycle

ÿ testing, integration, maintenance

‹ Size and diversity
ƒHuge range of different document types, tools, decisions, responsibilities,…
ƒNo common schema exists for classifying and cataloging these
ƒ In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6 22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Current Practice
‹ Coverage:

ƒ links from requirements forward to designs, code, test cases,
ƒ links back from designs, code, test cases to requirements
ƒ links between requirements at different levels

‹ Traceability process
ƒ Assign each sentence or paragraph a unique id number
ƒManually identify linkages
ƒ Use manual tables to record linkages in a document
ƒ Use a traceability tool (database) for project wide traceability
ƒ Tool then offers ability to

ÿ follow links
ÿ find missing links
ÿ measure overall traceability

Source: Adapted from Palmer, 1996, p367-8

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Traceability Tools
‹ Approaches:

ƒ hypertext linking
ÿ hotwords are identified manually, tool

records them
ƒ unique identifiers

ÿ each requirement gets a unique id;
database contains cross references

ƒ syntactic similarity coefficients
ÿ searches for occurrence of patterns of

words

‹ Limitations
ƒ All require a great deal of manual

effort to define the links
ƒ All rely on purely syntactic

information, with no semantics or
context

‹ Examples
ƒ single phase tools:

ÿTeamWork (Cadre) for structured
analysis

ƒ database tools, with queries and
report generation
ÿRTM (Marconi)
ÿSLATE (TD Technologies)
ÿDOORS (Zycad Corp)

ƒ hypertext-based tools
ÿDocument Director
ÿAny web browser

ƒ general development tools that
provide traceability
ÿRDD-100 (Ascent Logic) - documents
system conceptual models
ÿForesight - maintains data dictionary
and document management

Source: Adapted from Palmer, 1996, p372 24

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Limitations of Current Tools
‹ Informational Problems

ƒ Tools fail to track useful traceability information
ÿ e.g cannot answer queries such as “who is responsible for this piece of

information?”
ƒ inadequate pre-requirements traceability

ÿ “where did this requirement come from?”

‹ Lack of agreement…
ƒ …over the quantity and type of information to trace

‹ Informal Communication
ƒ People attach great importance to personal contact and informal

communication
ÿ These always supplement what is recorded in a traceability database

ƒ But then the traceability database only tells part of the story!
ÿ Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



7

25

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
‹ Involvement

ƒWho has been involved in the production of this requirement and how?

‹ Responsibility & Remit
ƒWho is responsible for this requirement?

ÿ who is currently responsible for it?
ÿ at what points in its life has this responsibility changed hands?

ƒWithin which group’s remit are decisions about this requirement?

‹ Change
ƒ At what points in the life of this requirements has working arrangements of

all involved been changed?

‹ Notification
ƒWho needs to be involved in, or informed of, any changes proposed to this

requirement?

‹ Loss of knowledge
ƒWhat are the ramifications regarding the loss of project knowledge if a

specific individual or group leaves?
26

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Contribution Structures
‹ ‘author’ attribute too weak

ƒ does not adequately capture ownership of information
ƒ refers to person that wrote the document rather than the person who

originated the content
ƒ fail to capture situations where many people participate
ƒ fail to capture changing patterns of participation

‹ Contribution structures
ƒ link requirements artifacts (contributions) to agents (contributors) via

contribution relations

‹ Roles
ƒ Principal

ÿ who motivated the artefact (responsible for consequences)
ƒ Author

ÿ who chose the structure and content (responsible for semantics)
ƒ Documentor

ÿ who recorded/transcribed the content (responsible for appearance)


