
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 11: Evolving Requirements

Last Week:
Agreeing Requirements

Negotiation 
Conflict Resolution

Last Week:
Agreeing Requirements

Negotiation 
Conflict Resolution

Next Week:
Integrated RE processes

selecting methods
method engineering

problem frames

Next Week:
Integrated RE processes

selecting methods
method engineering

problem frames

This Week:
Evolving Requirements

Change management
Product Families

Viewpoints and Inconsistency management
Paraconsistent Logics

This Week:
Evolving Requirements

Change management
Product Families

Viewpoints and Inconsistency management
Paraconsistent Logics

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Outline
‹ Software evolves because requirements evolve

ƒ Laws of software evolution
ƒ Beyond specification singularity

‹ Traditional change management
ƒ Baselines and Change Requests
ƒ Configuration Management

‹ Software Families
ƒ The product line approach

‹ Viewpoints
ƒ …as a framework for understanding requirements evolution
ƒManaging Inconsistency
ƒ Reasoning about change
ƒ Feature Interaction

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Program Types
‹ S-type Programs (“Specifiable”)

ƒ problem can be stated formally and completely
ƒ acceptance: Is the program correct according to its specification?
ƒ This software does not evolve.

ÿ A change to the specification defines a new problem, hence a new program

‹ P-type Programs (“Problem-solving”)
ƒ imprecise statement of a real-world problem
ƒ acceptance: Is the program an acceptable solution to the problem?
ƒ This software is likely to evolve continuously

ÿ because the solution is never perfect, and can be improved
ÿ because the real-world changes and hence the problem changes

‹ E-type Programs (“Embedded”)
ƒ A system that becomes part of the world that it models
ƒ acceptance: depends entirely on opinion and judgement
ƒ This software is inherently evolutionary

ÿ changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
‹ Continuing Change

ƒ Any software that reflects some external reality undergoes continual change
or becomes progressively less useful
ÿ change continues until it is judged more cost effective to replace the system

‹ Increasing Complexity
ƒ As software evolves, its complexity increases…

ÿ …unless steps are taken to control it.

‹ Fundamental Law of Program Evolution
ƒ Software evolution is self-regulating

ÿ …with statistically determinable trends and invariants

‹ Conservation of Organizational Stability
ƒ During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

‹ Conservation of Familiarity
ƒ The amount of change in successive releases is roughly constant

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Requirements Growth
‹Davis’s model:
ƒUser needs evolve continuously
ÿImagine a graph showing growth

of needs over time
ÿMay not be linear or continuous

(hence no scale shown)
ƒTraditional development always
lags behind needs growth
ÿfirst release implements only

part of the original requirements
ÿfunctional enhancement adds new

functionality
ÿeventually, further enhancement

becomes too costly, and a
replacement is planned
ÿthe replacement also only

implements part of its
requirements,
ÿand so on...

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping Evolutionary Prototyping

Incremental Development Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Software “maintenance”
‹ Maintenance philosophies

ƒ “throw-it-over-the-wall” - someone else is responsible for maintenance
ÿ investment in knowledge and experience is lost
ÿ maintenance becomes a reverse engineering challenge

ƒ “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

‹ Basili’s maintenance process models:
ƒQuick-fix model

ÿ changes made at the code level, as easily as possible
ÿ rapidly degrades the structure of the software

ƒ Iterative enhancement model
ÿ Changes made based on an analysis of the existing system
ÿ attempts to control complexity and maintain good design

ƒ Full-reuse model
ÿ Starts with requirements for the new system, reusing as much as possible
ÿ Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Traditional Change Management
‹ Managers need to respond to requirements change

ƒ Add new requirements during development
ÿ But not succumbing to feature creep

ƒModify requirements during development
ÿ Because development is a learning process

ƒ Remove requirements during development
ÿ requirements “scrub” for handling cost/schedule slippage

‹ Elements of Change Management
ƒ Configuration Items

ÿ Each distinct product during development is a configuration item
ÿ version control of each item
ÿ control which version of each item belongs in which build of the system

ƒ Baselines
ÿ A baseline is a stable version of a document that can be shared among the team
ÿ Formal approval process for changes to be incorporated into the next baseline

ƒ Change Management Process
ÿ All proposed changes are submitted formally as change requests
ÿ A review board reviews change requests periodically and decides which to accept
ÿ Review board considers interaction between change requests

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Beyond “Product Singularity”
‹ Most RE techniques focus on individual models

ƒ “Build a model, get it consistent and complete, then validate it”
ƒ Assumes that RE is a process with a single definite output

ÿ The output is a complete, consistent, valid specification of the requirements.

‹ This ignores reality!
ƒ Requirements Engineering isn’t just about obtaining a specification

ÿ Requirements are volatile; changes need to be managed continuously
ÿ The specification is never complete anyway!

ƒ There is never just one model:
ÿ There are multiple versions of models over time
ÿ There are multiple variants of models that explore different issues
ÿ There are multiple components of models representing different decompositions
ÿ Families of models evolve over time (add, delete, merge, restructure the family)

ƒ RE must address requirements evolution
ÿ How do we manage incremental change to requirements models?
ÿ How can multiple models (specifications) be compared?
ÿ How will changes to a model affect the properties established for it?
ÿ How do you capture the rationale for each change?
ÿ How do we reason about inconsistent and incomplete models?

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Towards Software Families
‹ Software reuse aims to cut costs

ƒ Developing software is expensive, so aim to reuse for related systems
ÿ Successful approaches focus on reusing knowledge and experience rather than

just software products
ÿ Economics of reuse are complex as it costs more to develop reusable software

‹ Libraries of Reusable Components
ƒ domain specific libraries (e.g. Math libraries)
ƒ program development libraries (e.g. Java AWT, C libraries)

‹ Domain Engineering
ƒ Divides software development into two parts:

ÿ domain analysis - identifies generic reusable components for a problem domain
ÿ application development - uses the domain components for specific applications.

‹ Software Families
ƒMany companies offer a range of related software systems

ÿ Choose a stable architecture for the software family
ÿ identify variations for different members of the family

ƒ Represents a strategic business decision about what software to develop
12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Viewpoints - Motivations

‹ Delaying Resolution of Inconsistency
ƒ Inconsistency caused by:

ÿConflict between knowledge sources
ÿDifferent interpretations
ÿCommunication problems between developers
ÿDifferent development speeds
ÿDivergence from prescribed method
ÿMistakes

ƒ Single model with consistency enforcement is too restrictive
ÿSingle model becomes a bottleneck for distributed modeling process
ÿConsistency enforcement prevents entry of divergent/tentative ideas

ƒ Inconsistencies generally arise where there is the most uncertainty
ÿPremature resolution may entail premature design decisions
ÿInconsistency implies more knowledge acquisition needed!
ÿMore radically: Some inconsistencies never get fixed…

Distributed Modeling
ƒ Collaborating analysts & stakeholders
ƒ Multiple modeling methods
ƒ Continuous evolution of requirements
ƒ Imperfect communication links

Distributed Modeling
ƒ Collaborating analysts & stakeholders
ƒ Multiple modeling methods
ƒ Continuous evolution of requirements
ƒ Imperfect communication links

Multiple Perspectives
ƒ Many different stakeholders
ƒ Diverse kinds of Domain Knowledge
ƒ Conflicting views (& negotiation)
ƒ Many representation schemes

Multiple Perspectives
ƒ Many different stakeholders
ƒ Diverse kinds of Domain Knowledge
ƒ Conflicting views (& negotiation)
ƒ Many representation schemes



4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

The basic framework
‹ Requirements model is a collection of viewpoints:

ƒ Viewpoints are instantiated from viewpoint templates
ÿ Template only has style and work plan slots filled
ÿ Development of templates is a separate “method engineering” task
ÿ A method provides a set of templates designed to be used together

ƒ Viewpoints contain consistency rules (no central control)
ÿ Internal consistency rules for checking a viewpoint’s specification
ÿ External consistency rules for inter-viewpoint checks
ÿ Work plan provides guidance for when to apply each consistency rule

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint
Only the owner

can edit the viewpoint
What does this

viewpoint describe?

Notation used, &
rules for well-formedness

Process model, including
consistency obligations
with other viewpoints

History of changes

Contents evolve
as the owner
makes changes

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Style

Work Plan

VP Template 1

VP Template 2

VP Template 3

VP Template 4

Style

Work Plan

Style

Work Plan
Style

Work Plan

Method Engineering with VP Templates
‹ Method = Configuration of ViewPoint Templates

ƒ A method provides a set of templates designed to be used together
ƒ Development of templates is a separate “method engineering” task

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Domain
Specification
Work Record

Domain
Specification
Work Record

Domain
Specification
Work Record

ViewPoint 4

ViewPoint 1

ViewPoint 2

ViewPoint 3

Domain
Specification
Work Record

Method Use with ViewPoints
‹ Specification = Configuration of ViewPoints

ƒ A system specification is a collection of Viewpoints related by “inter-
Viewpoint rules”

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Advantages of the approach
‹ Stakeholder buy-in and Traceability

ƒ Viewpoint owners can be roles, people, teams,…
ƒ Each stakeholder’s contribution is modeled in an appropriate notation

ÿ Stakeholders can identify and validate their own contributions
ÿ Increases stakeholder ‘ownership’ of the requirements process

ƒ Requirements can be traced back to a source/authority

‹ Structuring the development process
ƒ Each viewpoint is an independent ‘workpiece’

ÿ viewpoints as a distributed, loosely-coupled, suite of development tools
ƒNo global control, no global enforcement of consistency

ÿ supports synchronous and asynchronous working
ÿ consistency checking rules act as explicit re-synchronization points

‹ Structuring the descriptions
ƒ Different stakeholders’ contributions are modeled separately

ÿ Separation of concerns
ÿ Richer models through the use of multiple problem structures

ƒ Resolution of inconsistency can be delayed
ÿ Supports negotiation by allowing detailed comparison of viewpoints
ÿ Encourages early modeling and expression of divergent views



5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Inconsistency Management
‹ Inconsistency arises from:

ƒ Conflict between knowledge sources
ƒ Different interpretations
ƒ Communication problems between developers
ƒ Different development speeds
ƒ Divergence from prescribed method
ƒMistakes

‹ Definition of inconsistency
ƒ “two parts of a specification do not obey some relationship that should hold

between them”. (Easterbrook & Nuseibeh, 1995)
ƒ Relationships may link

ÿ syntactic elements of partial specifications;
ÿ semantics of elements in partial specifications;
ÿ sub-processes of the overall development process.

ƒ Relationships arise from:
ÿ definition of the method;
ÿ practical experience with the method;
ÿ local contingencies during development.

18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example Consistency Rules
‹ E.g 1: in structured analysis:

ƒ In a data flow diagram, if a process is decomposed in a separate diagram,
then the input flows into the parent process must be the same as the input
flows into child data flow diagram.

‹ E.g. 2: Use of domain concepts:
ƒ For a particular Library System, the concept of operations document states

that “User” and “Borrower” are synonyms. Hence, the list of user actions
described in the help manuals must correspond to the list of borrower
actions in the requirements specification.

‹ E.g. 3: Process rules:
ƒ Coding should not begin until the Systems Requirement Specification has

been signed off by the Project Review Board (PRB). Hence, the program
code repository should be empty until the SRS has the status ‘approved by
PRB’.

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lessons about inconsistency in practice
‹ some inconsistencies never get fixed

ƒ because the cost of changing the documentation outweighs the benefit
ƒ humans are good at inventing workarounds

‹ living with inconsistency is a risky decision
ƒ risk factors change, so the risk must be constantly re-evaluated

‹ some consistency checks are not worth performing
ƒ waste of money to establish consistency where change is anticipated
ƒ … also where documents are early drafts, or are full of known errors

‹ inconsistency is deniable
ƒ e.g. because of face saving and defensiveness - inconsistency seen as bad!
ƒ e.g. because you can always question the formalization!

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

ignore - if the
inconsistency can
be isolated and is
not important;

resolve - negotiate
a new solution or
find a compromise.

ameliorate - take
actions that improve
the situation but
which don’t resolve
the inconsistency;

circumvent -
remove/replace
inconsistent elements,
or remove/modify the
rule that was broken;

delay - if needed
information is not
immediately
available;

Living With Inconsistency
‹ Toleration?

ƒ Detection is vital:
ÿ living with inconsistency is only safe if you know what inconsistencies exist

‹ Handling:

‹ Inconsistencies usually indicate that more information
is needed.



6

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

An Inconsistency Process Model
Manage Inconsistency

Manage Inconsistency

Diagnose Handle

locate

identify

classify

ignore

resolve

ameliorate

circumvent

defer

Consistency
checking

rules

Measure inconsistency Analyze impact & risk

apply ru
les

refin
e ru

les

apply rules

refine rules

apply rules apply rules

M
o

n
ito

r c
o

n
s

eq
u

e
n

c
es

 o
f

h
an

d
lin

g
 a

ctio
n

(s
)

M
o

n
ito

r fo
r in

co
n

sisten
c

y

Inconsistency
detected

Inconsistency
handled

Inconsistency
characterized

tolerate

© 1999, Steve Easterbrook & Bashar Nuseibeh 22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Sample Inconsistencies
owner: Alice

domain:
phone-calling

style:
statechart
(work plan)

(work
record)

viewpoint

idle dial 
tone

ringing 
tone

engaged 
tone connected

off hook
lift 

receiver
dial 

(callee idle)

callee 
lifts 
receiver

dial 
(callee off 

hook)

callee 
replaces 
receiver

replace 
receiver

owner: Bob
domain:

phone-callee
style:

statechart
(work plan)

(work
record)

viewpoint

idle ringing connected

dial 
tone

replace 
receiver

lift 
receiver

caller 
dials

caller replaces 
receiver

caller 
replaces 
receiver

ƒRule 1:
"If a transition between
two states is described in
one ViewPoint, and both
states are described in
the second ViewPoint,
then the transition should
also be described in the
second ViewPoint".
(e.g. see the elements
shaded blue)

ƒRule 2:
"If a state is shown as
belonging to a super-state
in one ViewPoint, and the
same state is included in
the second ViewPoint,
then the super-state must
also be included in the
second ViewPoint".
(e.g. see the affected
elements shaded yellow)

These rules ensure the
notation is used
correctly

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Viewpoint Consistency Checking
1. Where does responsibility lie?

ƒ ViewPoint owners are responsible for
changes local to their own ViewPoints
ÿMay post requests/suggestions to others.
ÿNot forced to synchronize ViewPoints

2. How are relationships expressed?
ƒ Consistency rules express relationships

that should hold between ViewPoints
ÿEach ViewPoint has its own list of rules
ÿno central control

3. When should ViewPoint
relationships be checked?
ƒ ViewPoint owners check rules whenever

they need to…
ÿ… with guidance from local process model

4. How are relationships between
ViewPoints checked?
ƒ Transaction management system

between ViewPoints
ƒ Both ViewPoints notified of outcome

5. How are inconsistencies resolved?
ƒ List of actions associated with each rule

ÿActions don't necessarily make a complete
resolution
ÿActions arise from method design, and
experience with method use

6. What if inconsistencies are not
resolved?
ƒ Unresolved inconsistencies are recorded

in the work record.
ÿSubsequent changes that affect known
inconsistencies are tracked

7. What if future changes interfere
with a resolution?
ƒ Successful check does not guarantee

the relationship will continue to hold
ÿEach rule may need to be applied a
number of times during development

ƒ Changes that affect resolved
inconsistencies are tracked

ƒ Actions and rationale involved in
resolution are also stored.

24

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Reasoning in the Presence of Inconsistency

‹ Dialetheism - “some contradictions are true”
ƒ dialetheia

ÿ a true contradiction, I.e. that A and not(A) are both true
ƒ trivialism

ÿ the view that all contradictions are true
ƒ explosive inference

ÿ an inference relation is explosive if a contradiction entails everything
ƒ Law of non-contradiction has been orthodoxy in Western Philosophy since

Aristotle (but not in Eastern Philosophy!)
ÿ LNC is often taken as a precondition for rationality

‹ Dialetheists question this orthodoxy for a number of
reasons:

ÿ inability to handle self-referential paradoxes (e.g. the liar paradox)
ÿ problems in handling legal reasoning - laws are contradictory for special cases
ÿ quantum physics - a particle may be in two places at once
ÿ epistemological reasoning - people can (rationally) hold contradictory beliefs
ÿ Kuhnian paradigms - scientific theories often have undiscovered exceptions…
ÿ reasoning with vague predicates - an adolescent is both a child and not a child



7

25

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Paraconsistent logics
‹ Logics whose entailment relation is not explosive:

ƒNon-adjunctive
ÿ A and B do not entail AŸB
ÿ e.g. Jakowski’s possible worlds semantics

ƒNon-truth-functional
ÿ truth of ¬A is independent of the truth of A
ÿ e.g. da Costa’s “Brazilian logics”

ƒMany-valued systems
ÿ e.g. 4 values: {True, False, Both, Neither}
ÿ e.g. Lukasiewicz’s 3-valued logic, Belnap’s 4-valued logic
ÿ e.g. Easterbrook & Chechik’s Quasi-Boolean Algebras

ƒ Relevant Logics
ÿ use a different implication operator
ÿ e.g. Anderson & Belnap: a‹b only if a and b share an atomic proposition

ƒ Proof-weakened
ÿ restrict the form of proofs
ÿ e.g. Hunter & Nuseibeh’s Quasi-Classical logic: v-introduction only as the last

step


