
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 12: Integrating RE
Last Week:

Evolving Requirements
Change management

Inconsistency management
Product Families

Last Week:
Evolving Requirements

Change management
Inconsistency management

Product Families

This Week:
Looking for patterns
method engineering

problem frames
analysis patterns

This Week:
Looking for patterns
method engineering

problem frames
analysis patterns

Next Week:
Summary

current RE practice
+ Course Evaluation

Next Week:
Summary

current RE practice
+ Course Evaluation

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Method Engineering
‹ We have looked at a number of RE methods

ÿ Methods for Elicitation: Interviews, Ethnography, Scenarios, task analysis, etc…
ÿ Methods for Modeling Enterprises, Goals & NFRs: KAOS, I*, SoftGoal, etc…
ÿ Methods for Modeling System Functions: SSADM, SADT, OMT, UML, etc…
ÿ Methods for Writing Formal Specifications: SCR, RSML, etc…
ÿ Methods for Validating Reqts: Inspections, Prototyping, etc…
ÿ Methods for Negotiating Reqts: WinWin, Synoptic, Oz, etc…
ÿ Methods for Managing Evolving Reqts: ViewPoints, Default Logic, etc…

ƒ …and some of these methods cover several different aspects of RE

‹ How do we choose which method(s) to adopt?
ƒMethod Engineering:

ÿ Development and customization of methods for specific purposes
ÿ Includes process guidance for when and how to use the methods

ƒMethod Integration:
ÿ Create normative RE process models that combine multiple methods

ƒ But you first need to know what type of RE problem you are tackling...

‹ Are methods the only way to capture good practice?
ƒ Some people argue that the focus on methods is wrong…
ƒ if we want to learn how good RE is done, look for patterns in the outputs…



2

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

The “Patterns” Movement
‹ Background

ƒ Engineers/Architects do not solve every problem from first principles
ÿ When they find a good solution, they use it repeatedly

ƒ C.f Christopher Alexander “Notes on the Synthesis of Form”
ÿ Identified the need for a pattern language in architectural design

‹ Design Patterns
ƒ e.g. Book by Gamma, Helm, Johnson, Vlissides (aka “the gang of four”)
ƒ Presents a catalogue of patterns for object-oriented design

ÿ Really these are program-level (execution) patterns
ÿ Examples: factory; singleton; decorator; façade; visitor;…

‹ Analysis Patterns
ƒ e.g. Book by Martin Fowler
ƒ Presents a catalogue of patterns for conceptual modeling

ÿ Examples: Organizational structure; measurement; accounting; planning;…

‹ Problem Frames
ƒ e.g. Book by Michael Jackson
ƒ Presents a catalogue of patterns for figuring out what the problem is

ÿ Examples: workpieces; information display; commanded behaviour; connection;…

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Contract
Amount: Number

Price: Money
Party Instrument

What is a pattern?
“an idea that has been useful in one practical context,

and will probably be useful in others” - Fowler

‹ Elements:
ƒ Name - immensely useful for communicating your solution to others
ƒ Context - where the pattern is useful
ƒ Problem - that the pattern addresses
ƒ Forces - that play a part in forming a solution
ƒ Solution - that resolves those forces

‹ Example: (from Fowler)
ƒ Name: Contract
ƒ Context: any kind of financial deal
ƒ Problem: how to represent the transaction of buying and selling
ƒ Forces: distinguish two parties; buyer’s and seller’s views look different; a

deal really involves 2 instruments, but one is usually money; …
ƒ Solution:

buyer

seller



3

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Problem Frames
‹ Software is used to address an incredible variety of

problems
ƒ Often there is little similarity between problem types

ÿ other than that the solution involves software!
ƒ E.g. ticket machine vs. payroll system vs. signal processor vs. website vs. …

‹ Need identify and classify problem types
ƒ Problem frames are an abstraction from classes of problems

ÿ A problem frame has principal parts and a solution task
ÿ Problem frames are ridiculously simplistic (but still helpful)
ÿ Some problems require multiple problem frames

ƒ Choosing the right problem frame can help with selecting a method for
modeling and analysis

ƒ Select a problem frame that achieves:
ÿ Separability: Must be able to separate the principal parts of the problem
ÿ Completeness: Every part of the problem must be accommodated
ÿ Part Characteristics: The parts of the problem must have the right

characteristics in the model
ÿ Proportionality: The parts of the model should be filled roughly equally

Source: Adapted from Jackson, 1995, p158-160

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Jackson’s Frame Diagrams

inputs

outputs

machine input-output
relationship

source
program

executable
program

compiler
language

and compiler
semanticsmachine

inputs

outputs

Input-Output
relationship

Example:

Machine domain

Application domains
relationship between
application domains

Source: Adapted from Jackson, 1995, p84-86



4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Workpieces Frame
‹ Workpieces

ƒ An inert dynamic domain
ÿ workpieces can change, but only in

response to external stimuli
ƒ contained entirely in the machine

domain

‹ Operation Requests
ƒ One dimensional active dynamic domain

ÿ time-ordered, no external stimulus

‹ Operation Properties
ƒ Define the effects of and constraints

on operations

Example ignores:
ƒ multiple users

ÿ operations no longer time ordered
ƒ Interaction between text files

Operation
Requests

Workpieces

machine

Operation
Properties

Users text
filesEditor

tool

Edit
operation

rules

Example:

Source: Adapted from Jackson, 1995, p208-210

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Simple Information Display Frame
‹ Real World

ƒ An autonomous active dynamic domain
ÿ may be static for some problems

‹ Information Requests
ƒ Active dynamic domain

ÿ No assumed structure to the requests

‹ Information function
ƒ This is the Requirement!

ÿ i.e the system must preserve this
function

ƒ Information outputs must be accurate
reflection of the state of the real
world and must respond to information
requests

Frame ignores:
ƒ How outputs from the system might

affect the real world

Information
Requests

Real World

System Information
function

Example:

Information
Outputs

Account
Requests

Bank accounts

Banking
system Banking

Rules

Account
Statements

Source: Adapted from Jackson, 1995, p184-186



5

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Simple Control Frame
‹ Controlled domain

ƒ Dynamic
ƒ Both active and re-active

ÿ i.e spontaneous changes, and externally
influenced changes

ƒ May be several domains composed
ƒ Must be described indicatively

‹ Controller
ƒ machine to be built
ƒ directly connected to the controlled

domain

‹ Desired behaviour
ƒ The Requirement

ÿ described optatively

Example ignores:
ƒ interaction of the user

ÿ could be a non-reactive part of the
controlled domain

Controller
Desired

Behavior

Example:

Controlled
Domain

Source: Adapted from Jackson, 1995, p181-183

Program
sequencer Washing

Rules

Washing
machine

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Connection Frames
‹ Use when...

ƒ The machine and some part of the
application domain have no shared
phenomena

ƒ There is an unreliable connection
between them

‹ Two versions:
ƒ the connection domain is the machine

to be developed
ƒ the connection domain is given, and

the machine is one end of the
connection (not shown here)

Real world

System

Connection
Achievable

correspondence

Example:

CR

Source: Adapted from Jackson, 1995, p33-34

MC

Real world

Information
System

Data entry
system

Data modeling
rules

Data collection

transactions



6

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Multi-Frame Problems
‹ Example: a CASE tool
ƒ Editing diagrams
ÿ Workpiece Frame

ƒ Restricting Access
ÿ Simple Control Frame

ƒManaging the process
ÿ Simple IS Frame

Management
Information

Users

CASE
tool 2

Management
Information
DefinitionManagers

Source: Adapted from Jackson, 1995, p128-132

Users CASE
objects

CASE
tool 1

Editing
rules

Operation
Requests

machine

Operation
properties

Workpieces

CASE
objects

machine

Real
world

information requests

Information
outputs

Information
function

CASE
tool 3

Access
Restriction

CASE
tool 1

Users

Controller

Desired
behavior

Controlled
domain


