
1

1

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

CSC2106S
Requirements Engineering

Prof. Steve Easterbrook
sme@cs.toronto.edu

http://www.cs.toronto.edu/~sme/CSC2106S/

2

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Today’s Menu

Next Week:
Engineering Context
Systems Thinking
Role of Modeling

Next Week:
Engineering Context
Systems Thinking
Role of Modeling

This Week:
Aims of the course

Syllabus
Readings

What are Requirements?

This Week:
Aims of the course

Syllabus
Readings

What are Requirements?

3

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Definition of RE

Requirements Engineering (RE) is a
set of activities concerned with

identifying and communicating the
purpose of a software-intensive

system, and the contexts in which it
will be used. Hence, RE acts as the
bridge between the real world needs

of users, customers, and other
constituencies affected by a software

system, and the capabilities and
opportunities afforded by software-

intensive technologies

Requirements Engineering (RE) is a
set of activities concerned with

identifying and communicating the
purpose of a software-intensive

system, and the contexts in which it
will be used. Hence, RE acts as the
bridge between the real world needs

of users, customers, and other
constituencies affected by a software

system, and the capabilities and
opportunities afforded by software-

intensive technologies

Not a phase
or stage!

Communication
is as important
as the analysis

Quality means
fitness-for-purpose.
Cannot say anything
about quality unless
you understand the

purpose

Designers need to
know how and where
the system will be

used

Requirements are
partly about what

is needed…

…and partly about
what is possible

Need to identify all the stakeholders -
not just the customer and user

4

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Course Objectives
‹ Examine the state-of-the-art for research &

practice in Requirements Engineering.
ƒ Role of RE in software and systems engineering
ƒ Current techniques, notations, methods, processes and tools used in RE

‹ Gain practical experience in selected RE techniques
‹ Understand the essential nature of RE

ƒ Breadth of skills needed for RE, and the many disciplines on which it draws
ƒ Contextual factors & practicalities

‹ Gain a basic grounding for research in RE
ƒMethodological issues for RE research
ƒ Current research issues & direction of the field
ƒ Awareness of the literature

2

5

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Teaching and Assessment
‹ 1 x 3 hour seminar per week (13 weeks)

ƒ Discussion of weekly reading material
ƒ Student presentations
ƒ Plus typically up to 1 hour of “lecture” material from me.

‹ Weekly readings
ƒ 1 or 2 papers per week (must read before the seminar!)

ÿ Will be available on the course website
ƒ plus various background reading

‹ Assessments:
ƒ 40% “literature survey” on a topic of your choice
ƒ 40% “practical project”, applying 1 or more RE techniques
ƒ 10% oral presentation on one or other of the above
ƒ 10% class discussion (lead a discussion on weekly reading)

6

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

ARISE Video-conferencing
‹ ARISE is a collaborative venture

ƒ IBM Toronto Lab and the Universities of Waterloo, Toronto and York
ƒ See http://www.softwareresearch.ca/ for details

‹ Challenges:
ƒ Interaction

ÿ Laptops and instant messaging during the class?
ƒ Community building

ÿ Name tags, exchange bios, photos, web addresses

‹ ARISE research questions
ƒHow to collect, archive and index the classes?

ÿ Communications from the instructor (syllabus, assignments, lecture notes)
ÿ Postings to a Wiki (or similar online discussion tool)
ÿ Audio+Video of the seminars
ÿ Instant messaging during the seminars
ÿ Emails

ƒWhat would you give your consent to?

7

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Syllabus
‹ Introductory stuff

ƒWhat are Requirements?
ƒWhat is Engineering?
ƒWhat is a System?

‹ Basic RE activities
ƒ Planning and Eliciting Requirements
ƒModelling and Analysing Requirements
ƒ Communicating and Agreeing Requirements
ƒ Realizing and Evolving Requirements

‹ Advanced Topics
ƒ Inconsistency and Uncertainty in RE
ƒ Use of Formal Methods in RE
ƒ Research methodology for RE

8

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

(I) Introductory Stuff
‹ What are Requirements?

ƒ Scope (for this course): “Software-intensive Systems”
ƒ Separating the Problem from the Solution
ƒ What Requirements Engineers do

‹ What is Engineering?
ƒ Engineering as a profession
ƒ Engineering projects
ƒ Engineering lifecycles
ƒ Engineering design

‹ What is a System?
ƒ General systems theory
ƒ Formal foundations of software systems
ƒ Conceptual foundations of information systems
ƒ Empirical foundations of human activity systems
ƒ Observability of systems

3

9

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

(II) Eliciting and Planning
‹ Elicitation Targets

ƒ Stakeholders & User Classes
ƒ System boundaries
ƒ Goals
ƒ Scenarios

‹ Elicitation techniques
ƒ Interviews, questionnaires, surveys, meetings
ƒ Prototyping
ƒ Ethnographic techniques
ƒ Knowledge elicitation techniques
ƒ Conversation Analysis
ƒ Text Analysis

‹ The Feasibility Study
ƒ Types of Feasibility
ƒ Cost/benefit analysis

‹ Risk Analysis
ƒ Identifying and managing risk

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

(III) Modelling & Analysing
‹ Basics of modelling

ƒ Notations and their uses
ƒ Formality and Expressiveness
ƒ Abstraction and Decomposition
ƒ Model management and viewpoints
ƒ Types of Analysis

‹ Enterprises
ƒ Business rules and organisational

structures
ƒ Goals, tasks and responsibilities
ƒ Soft Systems analysis

‹ Information Structures
ƒ Entities and Relationships
ƒ Classes and Objects
ƒ Domain Ontologies

‹ Behaviour
ƒ Activities and Interactions
ƒ States and Transitions
ƒ Concurrency

‹ Quality Requirements
ƒ Taxonomies of NFRs
ƒ Performance
ƒ Usability
ƒ Safety
ƒ Security
ƒ Reliability
ƒ Maintainability

11

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

(IV) Communicating & Agreeing
‹ Validation

ƒ Refutable descriptions
ƒ Role of contracts and procurement
ƒ Role of organisational politics

‹ Documenting Requirements
ƒ Properties of a good specification
ƒ Documentation standards
ƒ Specification languages
ƒ Making requirements testable

‹ Prototyping and Walkthroughs
ƒ Throwaway prototyping
ƒ Operational prototyping
ƒ Walkthroughs of operational models

‹ Reviews and Inspections
ƒ Effectiveness of Inspection
ƒ Conducting an Inspection
ƒ Collaborative Requirements Workshops

‹ Negotiation and Prioritization
ƒ Representing argumentation and

rationale
ƒ Computer-supported negotiation
ƒ Trade-off analysis
ƒ Release planning

12

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

(V) Realizing and Evolving
‹ Software Evolution

ƒ Laws of evolution
ƒ Release planning
ƒ Product families
ƒ Requirement Reuse

‹ Requirements and
Architectures
ƒ Architectural Patterns and Description

Languages
ƒ Mapping requirements to architectures
ƒ Architectural Robustness

‹ Managing Change
ƒ Baselines and change requests
ƒ Configuration management and version

control
ƒ Impact Analysis

‹ Traceability and Rationale
ƒ Pre- and Post- traceability
ƒ Capturing Design Rationale
ƒ Traceability techniques

‹ Managing Inconsistency
ƒ On the inevitable intertwining of

inconsistency and change
ƒ Learning from inconsistency
ƒ Feature interaction
ƒ Living with inconsistency

4

13

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Bibliography
‹ Extensive list of books and papers!

ƒ no one textbook covers the field well
ƒ this course is research-oriented:

ÿ we’ll rely on recent papers more than books
ÿ most of the papers are available electronically
ÿ feel free to contact researchers directly for more papers, info, tools, etc.

‹ To help navigate the literature:
ƒ http://www.cs.toronto.edu/~sme/CSC2106S/readings.pdf

ÿ provides a detailed bibliography, arranged according to the topics on this course
ƒ http://easyweb.easynet.co.uk/~iany/reviews/reviews.htm

ÿ Book reviews by Ian Alexander
ƒ http://www.rmplace.org/

ÿ Al Davis’ bibliography and other RE related links
ƒ See also the resource list on the course website

14

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Many books on RE exist
Student textbooks

A. Davis, Software requirements: objects,
functions and states, Prentice Hall, 1993.

G. Kotonya and I. Sommerville, Requirements
Engineering: Processes and Techniques,
Wiley, 1998.

P. Loucopoulos and V. Karakostas, System
Requirements Engineering, McGraw Hill,
1995.

L. A. Macaulay, Requirements Engineering,
Springer Verlag, 1996.

R. J. Wieringa, Requirements Engineering:
Frameworks for Understanding, Wiley,
1996.

Flynn, D., Information Systems
Requirements: Determination and Analysis,
McGraw Hill, 1992

Collected Readings
R. H. Thayer and M. Dorfman (eds.),

Software Requirements Engineering,
Second Edition, IEEE Computer Society
Press, 1997.

J. Goguen, and M. Jirotka (Eds.),
Requirements Engineering: Social and
Technical Issues, Academic Press, 1994.

Practitioner textbooks
S. J. Andriole, Managing Systems Requirements: Methods,

Tools, and Cases, McGraw-Hill, 1996.
D. C. Gause and G. M. Weinberg, Exploring Requirements:

quality before design, Dorset House, 1989.
D. C. Gause and G. M. Weinberg, Are Your Lights On?: How

to Figure Out What the Problem Really Is, Dorset House,
1990.

J. O. Grady, System Requirements Analysis, McGraw Hill,
1993.

I. S. Graham, Requirements Engineering and Rapid
Development: A Rigorous, Object-Oriented Approach,
Addison-Wesley, 1998.

B. L. Kovitz, Practical Software Requirements; A Manual Of
Content And Style, Manning Publications, 1998

K. L. McGraw and K. Harbison, User-Centered
Requirements: The Scenario-Based Engineering Process,
Lawrence Erlbaum Associates, 1997.

J. Robertson and S. Robertson, The Complete Systems
Analysis, Dorset House, 1998.

G. Schneider and J. P. Winters, Applying Use Cases: A
Practical Guide, Addison-Wesley, 1998.

I. Sommerville and P. Sawyer, Requirements Engineering: A
Good Practice Guide, Wiley, 1997.

R. Stevens, K. Jackson, P. Brook, and S. Arnold, Systems
Engineering: Coping with Complexity, Prentice Hall 1998.

15

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Research Literature
Conferences
ƒIEEE International Symposium on

Requirements Engineering
ÿ RE’93 - Jan 1993, San Diego, USA
ÿ RE’95 - Mar 1995, York, UK.
ÿ RE’97 - Jan 1997. Annapolis, USA
ÿ RE’99 - Jun 1999, Limerick, Ireland
ÿ RE’01 - Aug 2001, Toronto, Canada

ƒIEEE International Conference on
Requirements Engineering
ÿ ICRE’94 - Apr 1994. Colorado Springs, USA.
ÿ ICRE’96 - Apr 1996. Colorado Springs, USA.
ÿ ICRE’98 - Apr 1998. Colorado Springs, USA.
ÿ ICRE’00 - Jun 2000, Chicago, USA

ƒIn 2002, ICRE and RE merged...
ƒIEEE International Requirements

Engineering Conferences
ÿ RE’02 - Sept 2002, Essen, Germany
ÿ RE’03 - Sept 2003, Monterey Bay, USA
ÿ RE’04 - Sept 2004, Kyoto, Japan

(see www.re04.org)
ÿ RE’05 - Sept 2005, Paris, France

(see www.re05.org)

Journals
ƒ Requirements Engineering Journal

ÿ published quarterly by Springer
ƒ IEEE Transactions on Software

Engineering
ÿ (published monthly)

ƒ ACM Transactions on Software
Engineering and Methodology
ÿ (published quarterly)

ƒ Various other SE journals:
ÿ Annals of Software Engineering
ÿ Software Practice and Experience
ÿ Automated Software Engineering
ÿ Journal of Systems and Software

Workshops
ƒ IWSSD - Int. Workshops on Software

Specification and Design
ƒ REFSQ - Int. Workshops on

Requirements Engineering: Foundations of
Software Quality

16

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Part II: What are Requirements?
‹ Two basic principles:

1. It is useful to separate the problem the solution
ÿ And to document a problem statement separately from any design solutions

2. This separation can never be achieved fully in practice
ÿ Because design changes the world, and therefore changes the original problem

‹ Why RE is important
ƒ (because failure is expensive!)

‹ Applications Domains
ƒ RE is more about studying human activity than it is about computers

‹ Themes for the course

5

17

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Separate the problem from the solution

Problem
Statement

Implementation
Statement

System

C
o

rr
es

p
o

n
d

en
ce

C
o

rr
ec

tn
es

s

V
al

id
at

io
n

V
er

if
ic

at
io

n

Source: Adapted from Loucopoulos & Karakostas, 1995, p20 and Blum, 1992

‹ Understand the problem
ƒ elicitation, requirements

acquisition, etc.

‹ Formally describe the
problem
ƒ specification, modelling, etc.

‹ Attain agreement on the
nature of the problem
ƒ validation, conflict resolution,

negotiation
ƒ requirements management -

maintain the agreement!

Real World

18

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

But design changes the world…

real world

abstract
model of worldimplementation

statement

problem
statement

change

System

19

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Importance of RE
‹ Problems

ƒ Increased reliance on software
ÿ E.g. cars, dishwashers, cell phones, web services, …

ƒ Software now the biggest cost element for mission critical systems
ÿ E.g. Boeing 777

ƒWastage on failed projects
ÿ E.g. 1997 GAO report: $145 billion over 6 years on software that was never

delivered
ƒHigh consequences of failure

ÿ E.g. Ariane 5: $500 million payload
ÿ E.g. Intel Pentium bug: $475 million

‹ Key factors:
ƒ Certification costs

ÿ E.g. Boeing 777: >40% of software budget spent on testing
ƒ Re-work from defect removal

ÿ E.g. Motorola: 60-80% of software budget (was) spent on re-work
ƒ Changing Requirements

ÿ E.g. California DMV system

20

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

What vs. How
‹ Traditionally, Requirements

should specify ‘what’ without
specifying ‘how’
ƒ But this is not always easy to distinguish:
ÿ What does a car do?
ÿ What does a web browser do?
ÿ What does an operating system do?

ƒ The ‘how’ at one level of abstraction forms
the ‘what’ for the next level

‹ Jackson’s work provides a
clearer distinction
ƒ ‘What’ refers to a system’s purpose
ÿ it is external to the system
ÿ it is a property of the application domain

ƒ ‘How’ refers to a system’s structure and
behavior
ÿ it is internal to the system
ÿ it is a property of the machine domain

Source: Adapted from Jackson, 1995, p207

…

Require-
ments

Design

System

Design

Require-
ments

Sub-
system

Require-
ments

Unit

Design

What

How

What

How

What

How

6

21

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The Application vs. The Machine

‹ Some distinctions:
ƒ Domain Properties are things in the application domain that are true whether or not we

ever build the proposed system
ƒ Requirements are things in the application domain that we wish to be made true by

delivering the proposed system
ƒ A specification is a description of the behaviours the program must have in order to

meet the requirements

‹ Two verification criteria:
ƒ The Program running on a particular Computer satisfies the Specification
ƒ The Specification, in the context of the given Domain properties, satisfies the

Requirements

‹ Two validation criteria:
ƒ Did we discover (and understand) all the important Requirements?
ƒ Did we discover (and understand) all the relevant Domain properties?

Source: Adapted from Jackson, 1995, p170-171

Application Domain Machine Domain

22

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook
Source: Adapted from Jackson, 1995, p172

Validation Example
‹ Requirement R:

ƒ “Reverse thrust shall only be enabled when the aircraft is moving on the
runway”

‹ Domain Properties D:
ƒWheel pulses on if and only if wheels turning
ƒWheels turning if and only if moving on runway

‹ Specification S:
ƒ Reverse thrust enabled if and only if wheel pulses on

‹ S + D imply R
ƒ But what if the domain model is wrong?

23

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Another Example
‹ Requirement R:

ƒ “The database shall only be accessible by authorized personnel”

‹ Domain Properties D:
ƒ Authorized personnel have passwords
ƒ Passwords are never shared with non-authorized personnel

‹ Specification S:
ƒ Access to the database shall only be granted after the user types an

authorized password

‹ S + D imply R
ƒ But what if the domain assumptions are wrong?

Source: Adapted from Jackson, 1995, p172 24

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

software
Monitored

 Variables

Environ-
ment

System

input

data data

output Controlled

 Variables

Setting the Boundaries
‹ How will the software interact with the world?

ƒ Systems engineer decides what application domain phenomena are shared

‹ E.g. the four variable model:
ƒ Decide the boundaries by designing the input/output devices
ƒ Uses I/O data items as proxies for the monitored and controlled variables

Environ-
ment

Input
devices

Output
devices

S - Specification of software in
terms of inputs & outputs

R - Requirements: what control actions the system must take in which circumstances.
D - Domain Properties that constrain how the environment can behave

7

25

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Some observations about RE
‹ RE is not necessarily a sequential process:

ƒ Don’t have to write the problem statement before the solution statement
ÿ (Re-)writing a problem statement can be useful at any stage of development

ƒ RE is a set of activities that continue throughout the development process

‹ The problem statement will be imperfect
ƒ RE models are approximations of the world

ÿ will contain inaccuracies and inconsistencies
ÿ will omit some information.
ÿ detailed analysis can reduce the risk that these will cause serious problems…
ÿ …but that risk can never be reduced to zero

‹ Perfecting a specification may not be cost-effective
ƒ Requirements analysis has a cost
ƒ For different projects, the cost-benefit balance will be different

‹ Problem statement should never be treated as fixed
ƒ Change is inevitable, and therefore must be planned for
ƒ There should be a way of incorporating changes periodically

26

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Key Themes for this Course
‹ Software-intensive systems

ƒ software + hardware + human activity
ÿthe human activity gives the system its
purpose

ƒ RE is about discovering that purpose

‹ Continuous Change
ƒ Introduction of new system changes

the human activity
ƒ People find new ways of using it

‹ Human Centered Development
ƒ goal is to change human activities…

ÿ…to make them more effective,
efficient, safe, enjoyable, etc.

ƒ …rather than to design a new computer
system

‹ A Systems Perspective
ƒ treat relevant parts of the world as

systems with emergent properties

‹ Multi-disciplinary approach
ƒ Use whatever techniques seem useful

ÿSocial, cognitive, mathematical,…

‹ Continuous Risk Management
ƒ Upfront RE as risk reduction

‹ Design as Reflection
ƒ New designs arise in response to

observed problems with existing ones
ƒ There is always an existing system!

‹ Multiple Viewpoints
ƒ Many stakeholders
ƒ Each model presupposes a viewpoint

‹ RE as negotiation
ƒ Resolve conflicts between different

stakeholders’ goals
ƒ Manage customer’s expectations

27

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

What do Requirements Engineers do?
‹ Starting point
ƒ Some notion that there is a “problem” that needs solving
ÿ e.g. dissatisfaction with the current state of affairs
ÿ e.g. a new business opportunity
ÿ e.g. a potential saving of cost, time, resource usage, etc.

ƒ A Requirements Engineer is an agent of change

‹ The requirements engineer must:
ƒ identify the “problem”/”opportunity”
ÿ Which problem needs to be solved? (identify problem Boundaries)
ÿ Where is the problem? (understand the Context/Problem Domain)
ÿ Whose problem is it? (identify Stakeholders)
ÿ Why does it need solving? (identify the stakeholders’ Goals)
ÿ How might a software system help? (collect some Scenarios)
ÿ When does it need solving? (identify Development Constraints)
ÿ What might prevent us solving it? (identify Feasibility and Risk)

ƒ and become an expert in the problem domain
ÿ although ignorance is important too -- “the intelligent ignoramus”

28

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

A notation is a representation scheme (or language) for expressing things; e.g.,
Z, first order logic, dataflow diagrams, UML.

A technique prescribes how to perform a particular (technical) activity - and, if
necessary, how to describe a product of that activity in a particular notation;
e.g, use case diagramming,

A method provides a technical prescription for how to perform a collection of
activities, focusing on integration of techniques and guidance about their use;
e.g., SADT, OMT, JSD, KAOS, RUP(?).

A Process model is an abstract description of how to conduct a collection of
activities, focusing on resource usage and dependencies between activities.

A Process is an enactment of a process model, describing the behaviour of one
or more agents and their management of resources.

A notation is a representation scheme (or language) for expressing things; e.g.,
Z, first order logic, dataflow diagrams, UML.

A technique prescribes how to perform a particular (technical) activity - and, if
necessary, how to describe a product of that activity in a particular notation;
e.g, use case diagramming,

A method provides a technical prescription for how to perform a collection of
activities, focusing on integration of techniques and guidance about their use;
e.g., SADT, OMT, JSD, KAOS, RUP(?).

A Process model is an abstract description of how to conduct a collection of
activities, focusing on resource usage and dependencies between activities.

A Process is an enactment of a process model, describing the behaviour of one
or more agents and their management of resources.

Processes, Methods, Techniques...

‹ Where do RE methods fit into RE processes?
ƒ each method is appropriate for some particular types of problem domain

ÿ often not well-defined where they fit
ƒmethods vary in their coverage (of RE activities) and focus; e.g.,

ÿ Coverage: elicitation, modelling, analysis, etc.
ÿ Focus: goals, behaviour, viewpoints, etc.

