
1

1

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lecture 11: Evolving Requirements

Last Week:
Agreeing Requirements

Negotiation 
Conflict Resolution

Last Week:
Agreeing Requirements

Negotiation 
Conflict Resolution

Next Week:
How much Formality?

Appropriate use of
Formal methods in RE

Next Week:
How much Formality?

Appropriate use of
Formal methods in RE

This Week:
Evolving Requirements

Change management
Product Families

Traceability
Inconsistency management

This Week:
Evolving Requirements

Change management
Product Families

Traceability
Inconsistency management

2

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Outline
 Basics of Software Evolution

 Laws of software evolution
 Baselines, Change Requests and Configuration Management
 Beyond specification singularity
 Software Families - The product line approach

 Requirements Traceability
 Importance of traceability
 Traceability tools
 Contribution structures

 Inconsistency Management
 Basics of viewpoints
 Expressing consistency rules
 Reasoning in the presence of inconsistency

3

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Program Types
 S-type Programs (“Specifiable”)

 problem can be stated formally and completely
 acceptance: Is the program correct according to its specification?
 This software does not evolve.

 A change to the specification defines a new problem, hence a new program

 P-type Programs (“Problem-solving”)
 imprecise statement of a real-world problem
 acceptance: Is the program an acceptable solution to the problem?
 This software is likely to evolve continuously

 because the solution is never perfect, and can be improved
 because the real-world changes and hence the problem changes

 E-type Programs (“Embedded”)
 A system that becomes part of the world that it models
 acceptance: depends entirely on opinion and judgement
 This software is inherently evolutionary

 changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063



2

5

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
 Continuing Change

 Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

 change continues until it is judged more cost effective to replace the system

 Increasing Complexity
 As software evolves, its complexity increases…

 …unless steps are taken to control it.

 Fundamental Law of Program Evolution
 Software evolution is self-regulating

 …with statistically determinable trends and invariants

 Conservation of Organizational Stability
 During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

 Conservation of Familiarity
 The amount of change in successive releases is roughly constant

6

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Requirements Growth
Davis’s model:

User needs evolve continuously
Imagine a graph showing growth

of needs over time
May not be linear or continuous

(hence no scale shown)
Traditional development always
lags behind needs growth
first release implements only

part of the original requirements
functional enhancement adds new

functionality
eventually, further enhancement

becomes too costly, and a
replacement is planned

the replacement also only
implements part of its
requirements,

and so on...

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

7

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping Evolutionary Prototyping

Incremental Development Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

8

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Software “maintenance”
Maintenance philosophies

 “throw-it-over-the-wall” - someone else is responsible for maintenance
 investment in knowledge and experience is lost
 maintenance becomes a reverse engineering challenge

 “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

 Basili’s maintenance process models:
Quick-fix model

 changes made at the code level, as easily as possible
 rapidly degrades the structure of the software

 Iterative enhancement model
 Changes made based on an analysis of the existing system
 attempts to control complexity and maintain good design

 Full-reuse model
 Starts with requirements for the new system, reusing as much as possible
 Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495



3

9

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traditional Change Management
Managers need to respond to requirements change

 Add new requirements during development
 But not succumbing to feature creep

Modify requirements during development
 Because development is a learning process

 Remove requirements during development
 requirements “scrub” for handling cost/schedule slippage

 Elements of Change Management
 Configuration Items

 Each distinct product during development is a configuration item
 version control of each item
 control which version of each item belongs in which build of the system

 Baselines
 A baseline is a stable version of a document that can be shared among the team
 Formal approval process for changes to be incorporated into the next baseline

 Change Management Process
 All proposed changes are submitted formally as change requests
 A review board reviews change requests periodically and decides which to accept
 Review board considers interaction between change requests

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Beyond “Product Singularity”
Most RE techniques focus on individual models

 “Build a model, get it consistent and complete, then validate it”
 Assumes that RE is a process with a single definite output

 The output is a complete, consistent, valid specification of the requirements.

 This ignores reality!
 Requirements Engineering isn’t just about obtaining a specification

 Requirements are volatile; changes need to be managed continuously
 The specification is never complete anyway!

 There is never just one model:
 There are multiple versions of models over time
 There are multiple variants of models that explore different issues
 There are multiple components of models representing different decompositions
 Families of models evolve over time (add, delete, merge, restructure the family)

 RE must address requirements evolution
 How do we manage incremental change to requirements models?
 How can multiple models (specifications) be compared?
 How will changes to a model affect the properties established for it?
 How do you capture the rationale for each change?
 How do we reason about inconsistent and incomplete models?

11

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Towards Software Families
 Software reuse aims to cut costs

 Developing software is expensive, so aim to reuse for related systems
 Successful approaches focus on reusing knowledge and experience rather than

just software products
 Economics of reuse are complex as it costs more to develop reusable software

 Libraries of Reusable Components
 domain specific libraries (e.g. Math libraries)
 program development libraries (e.g. Java AWT, C libraries)

 Domain Engineering
 Divides software development into two parts:

 domain analysis - identifies generic reusable components for a problem domain
 application development - uses the domain components for specific applications.

 Software Families
Many companies offer a range of related software systems

 Choose a stable architecture for the software family
 identify variations for different members of the family

 Represents a strategic business decision about what software to develop
12

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Requirements Traceability

 Definition (DOD-STD-2167A):
“(1) The document in question contains or implements all applicable

stipulations in the predecessor document
(2) a given term, acronym, or abbreviation means the same thing in all

documents
(3) a given item or concept is referred to by the same name or description

in the documents
(4) all material in the successor document has its basis in the predecessor

document, that is, no untraceable material has been introduced
(5) the two documents do not contradict one another”

 In short:
 A demonstration of completeness, necessity and consistency
 a clear allocation/flowdown path (down through the document hierarchy)
 a clear derivation path (up through the document hierarchy)

Source: Adapted from Palmer, 1996, p 367



4

13

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Importance of Traceability
 Verification and Validation

 assessing adequacy of test suite
 assessing conformance to

requirements
 assessing completeness, consistency,

impact analysis
 assessing over- and under-design
 investigating high level behavior

impact on detailed specifications
 detecting requirements conflicts
 checking consistency of decision

making across the lifecycle

 Maintenance
 Assessing change requests
 Tracing design rationale

 Document access
 ability to find information quickly in

large documents

 Process visibility
 ability to see how the software was

developed
 provides an audit trail

 Management
 change management
 risk management
 control of the development process

Source: Adapted from Palmer, 1996, p365 14

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traceability Difficulties
 Cost

 very little automated support
 full traceability is very expensive and time-consuming

 Delayed gratification
 the people defining traceability links are not the people who benefit from it

 development vs. V&V
much of the benefit comes late in the lifecycle

 testing, integration, maintenance

 Size and diversity
Huge range of different document types, tools, decisions, responsibilities,…
No common schema exists for classifying and cataloging these
 In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6

15

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Current Practice
 Coverage:

 links from requirements forward to designs, code, test cases,
 links back from designs, code, test cases to requirements
 links between requirements at different levels

 Traceability process
 Assign each sentence or paragraph a unique id number
Manually identify linkages
 Use manual tables to record linkages in a document
 Use a traceability tool (database) for project wide traceability
 Tool then offers ability to

 follow links
 find missing links
 measure overall traceability

Source: Adapted from Palmer, 1996, p367-8 16

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traceability Tools
 Approaches:

 hypertext linking
 hotwords are identified manually, tool

records them
 unique identifiers

 each requirement gets a unique id;
database contains cross references

 syntactic similarity coefficients
 searches for occurrence of patterns of

words

 Limitations
 All require a great deal of manual

effort to define the links
 All rely on purely syntactic

information, with no semantics or
context

 Examples
 single phase tools:

TeamWork (Cadre) for structured
analysis

 database tools, with queries and
report generation

RTM (Marconi)
SLATE (TD Technologies)
DOORS (Zycad Corp)

 hypertext-based tools
Document Director
Any web browser

 general development tools that
provide traceability

RDD-100 (Ascent Logic) - documents
system conceptual models
Foresight - maintains data dictionary
and document management

Source: Adapted from Palmer, 1996, p372



5

17

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Limitations of Current Tools
 Informational Problems

 Tools fail to track useful traceability information
 e.g cannot answer queries such as “who is responsible for this piece of

information?”
 inadequate pre-requirements traceability

 “where did this requirement come from?”

 Lack of agreement…
 …over the quantity and type of information to trace

 Informal Communication
 People attach great importance to personal contact and informal

communication
 These always supplement what is recorded in a traceability database

 But then the traceability database only tells part of the story!
 Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100 18

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook
Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
 Involvement

Who has been involved in the production of this requirement and how?

 Responsibility & Remit
Who is responsible for this requirement?

 who is currently responsible for it?
 at what points in its life has this responsibility changed hands?

Within which group’s remit are decisions about this requirement?

 Change
 At what points in the life of this requirements has working arrangements of

all involved been changed?

Notification
Who needs to be involved in, or informed of, any changes proposed to this

requirement?

 Loss of knowledge
What are the ramifications regarding the loss of project knowledge if a

specific individual or group leaves?

19

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Contribution Structures
 ‘author’ attribute too weak

 does not adequately capture ownership of information
 refers to person that wrote the document rather than the person who

originated the content
 fail to capture situations where many people participate
 fail to capture changing patterns of participation

 Contribution structures
 link requirements artifacts (contributions) to agents (contributors) via

contribution relations

 Roles
 Principal

 who motivated the artefact (responsible for consequences)
 Author

 who chose the structure and content (responsible for semantics)
 Documentor

 who recorded/transcribed the content (responsible for appearance)

20

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Viewpoints - Motivations

 Delaying Resolution of Inconsistency
 Inconsistency caused by:

Conflict between knowledge sources
Different interpretations
Communication problems between developers
Different development speeds
Divergence from prescribed method
Mistakes

 Single model with consistency enforcement is too restrictive
Single model becomes a bottleneck for distributed modeling process
Consistency enforcement prevents entry of divergent/tentative ideas

 Inconsistencies generally arise where there is the most uncertainty
Premature resolution may entail premature design decisions
Inconsistency implies more knowledge acquisition needed!
More radically: Some inconsistencies never get fixed…

Distributed Modeling
 Collaborating analysts & stakeholders
 Multiple modeling methods
 Continuous evolution of requirements
 Imperfect communication links

Distributed Modeling
 Collaborating analysts & stakeholders
 Multiple modeling methods
 Continuous evolution of requirements
 Imperfect communication links

Multiple Perspectives
 Many different stakeholders
 Diverse kinds of Domain Knowledge
 Conflicting views (& negotiation)
 Many representation schemes

Multiple Perspectives
 Many different stakeholders
 Diverse kinds of Domain Knowledge
 Conflicting views (& negotiation)
 Many representation schemes



6

21

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The basic framework
 Requirements model is a collection of viewpoints:

 Viewpoints are instantiated from viewpoint templates
 Template only has style and work plan slots filled
 Development of templates is a separate “method engineering” task
 A method provides a set of templates designed to be used together

 Viewpoints contain consistency rules (no central control)
 Internal consistency rules for checking a viewpoint’s specification
 External consistency rules for inter-viewpoint checks
 Work plan provides guidance for when to apply each consistency rule

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint
Only the owner

can edit the viewpoint
What does this

viewpoint describe?

Notation used, &
rules for well-formedness

Process model, including
consistency obligations
with other viewpoints

History of changes

Contents evolve
as the owner
makes changes

22

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Advantages of the approach
 Stakeholder buy-in and Traceability

 Viewpoint owners can be roles, people, teams,…
 Each stakeholder’s contribution is modeled in an appropriate notation

 Stakeholders can identify and validate their own contributions
 Increases stakeholder ‘ownership’ of the requirements process

 Requirements can be traced back to a source/authority

 Structuring the development process
 Each viewpoint is an independent ‘workpiece’

 viewpoints as a distributed, loosely-coupled, suite of development tools
No global control, no global enforcement of consistency

 supports synchronous and asynchronous working
 consistency checking rules act as explicit re-synchronization points

 Structuring the descriptions
 Different stakeholders’ contributions are modeled separately

 Separation of concerns
 Richer models through the use of multiple problem structures

 Resolution of inconsistency can be delayed
 Supports negotiation by allowing detailed comparison of viewpoints
 Encourages early modeling and expression of divergent views

23

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Inconsistency Management
 Inconsistency arises from:

 Conflict between knowledge sources
 Different interpretations
 Communication problems between developers
 Different development speeds
 Divergence from prescribed method
Mistakes

 Definition of inconsistency
 “two parts of a specification do not obey some relationship that should hold

between them”. (Easterbrook & Nuseibeh, 1995)
 Relationships may link

 syntactic elements of partial specifications;
 semantics of elements in partial specifications;
 sub-processes of the overall development process.

 Relationships arise from:
 definition of the method;
 practical experience with the method;
 local contingencies during development.

24

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Example Consistency Rules
 E.g 1: in structured analysis:

 In a data flow diagram, if a process is decomposed in a separate diagram,
then the input flows into the parent process must be the same as the input
flows into child data flow diagram.

 E.g. 2: Use of domain concepts:
 For a particular Library System, the concept of operations document states

that “User” and “Borrower” are synonyms. Hence, the list of user actions
described in the help manuals must correspond to the list of borrower
actions in the requirements specification.

 E.g. 3: Process rules:
 Coding should not begin until the Systems Requirement Specification has

been signed off by the Project Review Board (PRB). Hence, the program
code repository should be empty until the SRS has the status ‘approved by
PRB’.



7

25

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lessons about inconsistency in practice
 some inconsistencies never get fixed

 because the cost of changing the documentation outweighs the benefit
 humans are good at inventing workarounds

 living with inconsistency is a risky decision
 risk factors change, so the risk must be constantly re-evaluated

 some consistency checks are not worth performing
 waste of money to establish consistency where change is anticipated
 … also where documents are early drafts, or are full of known errors

 inconsistency is deniable
 e.g. because of face saving and defensiveness - inconsistency seen as bad!
 e.g. because you can always question the formalization!

26

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Viewpoint Consistency Checking
1. Where does responsibility lie?

 ViewPoint owners are responsible for
changes local to their own ViewPoints

May post requests/suggestions to others.
Not forced to synchronize ViewPoints

2. How are relationships expressed?
 Consistency rules express relationships

that should hold between ViewPoints
Each ViewPoint has its own list of rules
no central control

3. When should ViewPoint
relationships be checked?

 ViewPoint owners check rules whenever
they need to…

… with guidance from local process model

4. How are relationships between
ViewPoints checked?

 Transaction management system
between ViewPoints

 Both ViewPoints notified of outcome

5. How are inconsistencies resolved?
 List of actions associated with each rule

Actions don't necessarily make a complete
resolution
Actions arise from method design, and
experience with method use

6. What if inconsistencies are not
resolved?

 Unresolved inconsistencies are recorded
in the work record.

Subsequent changes that affect known
inconsistencies are tracked

7. What if future changes interfere
with a resolution?

 Successful check does not guarantee
the relationship will continue to hold

Each rule may need to be applied a
number of times during development

 Changes that affect resolved
inconsistencies are tracked

 Actions and rationale involved in
resolution are also stored.

27

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Reasoning in the Presence of Inconsistency

 Dialetheism - “some contradictions are true”
 dialetheia

 a true contradiction, I.e. that A and not(A) are both true
 trivialism

 the view that all contradictions are true
 explosive inference

 an inference relation is explosive if a contradiction entails everything
 Law of non-contradiction has been orthodoxy in Western Philosophy since

Aristotle (but not in Eastern Philosophy!)
 LNC is often taken as a precondition for rationality

 Dialetheists question this orthodoxy for a number of
reasons:

 inability to handle self-referential paradoxes (e.g. the liar paradox)
 problems in handling legal reasoning - laws are contradictory for special cases
 quantum physics - a particle may be in two places at once
 epistemological reasoning - people can (rationally) hold contradictory beliefs
 Kuhnian paradigms - scientific theories often have undiscovered exceptions…
 reasoning with vague predicates - an adolescent is both a child and not a child

28

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Paraconsistent logics
 Logics whose entailment relation is not explosive:

Non-adjunctive
 A and B do not entail A∧B
 e.g. Jakowski’s possible worlds semantics

Non-truth-functional
 truth of ¬A is independent of the truth of A
 e.g. da Costa’s “Brazilian logics”

Many-valued systems
 e.g. 4 values: {True, False, Both, Neither}
 e.g. Lukasiewicz’s 3-valued logic, Belnap’s 4-valued logic
 e.g. Easterbrook & Chechik’s Quasi-Boolean Algebras

 Relevant Logics
 use a different implication operator
 e.g. Anderson & Belnap: ab only if a and b share an atomic proposition

 Proof-weakened
 restrict the form of proofs
 e.g. Hunter & Nuseibeh’s Quasi-Classical logic: v-introduction only as the last

step


