
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 11: How Much Formality?
Last Week:
Change and
Evolution

Software Evolution
Traceability

Inconsistency

Last Week:
Change and
Evolution

Software Evolution
Traceability

Inconsistency

This Week:
How much formality?

Formal Modeling Techniques
Appropriate Uses of FM
Tips on formal modeling

This Week:
How much formality?

Formal Modeling Techniques
Appropriate Uses of FM
Tips on formal modeling

The End!

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Formal Methods in RE

Why formalize in RE?
To remove ambiguity and improve

precision
Provides a basis for verification that

the requirements have been met
Allows us to reason about the

requirements
 Properties of formal requirements models

can be checked automatically
 Can test for consistency, explore the

consequences, etc.

Allows us to animate/execute the
requirements
Helps with visualization and validation

Will have to formalize eventually anyway
 RE is all about bridging from the informal

world to a formal machine domain

Why formalize in RE?
To remove ambiguity and improve

precision
Provides a basis for verification that

the requirements have been met
Allows us to reason about the

requirements
 Properties of formal requirements models

can be checked automatically
 Can test for consistency, explore the

consequences, etc.

Allows us to animate/execute the
requirements
Helps with visualization and validation

Will have to formalize eventually anyway
 RE is all about bridging from the informal

world to a formal machine domain

Why people don’t formalize in RE
Formal Methods tend to be lower level

than other analysis techniques
 They force you to include too much detail

Formal Methods tend to concentrate on
consistent, correct models
 …but most of the time your models are

inconsistent, incorrect, incomplete…

People get confused about which tools
are appropriate:
 E.g. modeling program behaviour vs.

modeling the requirements
 formal methods advocates get too attached

to one tool!
Formal methods require more effort

 ...and the payoff is deferred

Why people don’t formalize in RE
Formal Methods tend to be lower level

than other analysis techniques
 They force you to include too much detail

Formal Methods tend to concentrate on
consistent, correct models
 …but most of the time your models are

inconsistent, incorrect, incomplete…

People get confused about which tools
are appropriate:
 E.g. modeling program behaviour vs.

modeling the requirements
 formal methods advocates get too attached

to one tool!
Formal methods require more effort

 ...and the payoff is deferred

What to formalize in RE?
models of requirements knowledge (so we can reason about them)
specifications of requirements (so we can document them precisely)

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What are Formal Methods?
 Broad View (Leveson)

 application of discrete mathematics to software engineering
 …involves modeling and analysis
 …with an underlying mathematically-precise notation

Narrow View (Wing)
 Use of a formal language

 a set of strings over some well-defined alphabet, with rules for distinguishing
which strings belong to the language

 Formal reasoning about formulae in the language
 E.g. formal proofs: use axioms and proof rules to demonstrate that some formula

is in the language

 For requirements modeling…
 A notation is formal if:

 …it comes with a formal set of rules which define its syntax and semantics.
 …the rules can be used to analyse expressions to determine if they are

syntactically well-formed or to prove properties about them.

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Varieties of formal analysis
 Consistency analysis and typechecking

 “Is the formal model well-formed?”
 [assuming that we only use modeling languages where “well-formedness” is a

useful thing to check]

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes

 State exploration
 E.g. use a model checking to find traces that satisfy some property

 Checking application properties:
 “will the system ever do the following...”

 Verifying design refinement
 “does the design meet the requirements?”



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three different models??

D:
a model of the
environment

S:
a model of
the software 
behaviour

R:
a model 

of the
requirements

is
satisfied

by

co
ns

tr
ai

ns

ac
ts

 u
po

n

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

FM in practice
 From Shuttle Study [Crow & DiVito 1996]

More errors found in the process of formalizing the requirements than were
found in the formal analysis

 Formalization forces you to be precise and explicit, hence reveals problems
 Formal analysis then finds fewer, but more subtle problems

 Typical errors found include:
 inconsistent interfaces
 incorrect requirements (system does the wrong thing in response to an input)
 clarity/maintainability problems

Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

How do FMs differ?
Mathematical Foundation

 Logic
 first order predicate logic - e.g. RML
 temporal logic - e.g. Albert II, SCR, KAOS
 multi-valued logic – e.g. Xchek

Other
 algebraic languages - e.g. Larch
 set theory - e.g. Z

Ontology
 fixed

 states, events, actions - e.g. SCR
 entities, activities, assertions - e.g. RML

 extensible
 meta language for defining new concepts - e.g. Telos

 Treatment of Time
 State/event models

 time as a discrete sequence of events - e.g. SCR
 time as quantified intervals - e.g. KAOS

 Time as a first class object
 meta-level class to represent time - e.g. Telos

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three traditions …
Formal Specification Languages

Grew out of work on program verification
Spawned many general purpose specification languages

 Suitable for specifying the behaviour of program units
Key technologies: Type checking, Theorem proving

Reactive System Modeling
Grew out of a need to capture dynamic models of

system behaviour
Focus is on reactive systems (e.g. real-time,

embedded control systems)
 support reasoning about safety, liveness, performance(?)
 provide a precise requirements specification language

Key technologies: Consistency checking, Model checking

Formal Conceptual Modeling
Grew out of a concern for capturing real-world

knowledge in RE
Focus is on modeling domain entities, activities,

agents, assertions
 provide a formal ontology for domain modeling
 use first order predicate logic as the underlying formalism

Key technologies: inference engines, default reasoning,
KBS-shells

Applicability to RE is excellent
 modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is excellent
 modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is good
 modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is good
 modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is poor
 No abstraction or structuring
 closely tied to program

semantics
Examples: Larch, Z, VDM, …

Applicability to RE is poor
 No abstraction or structuring
 closely tied to program

semantics
Examples: Larch, Z, VDM, …



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(1) Formal Specification Languages
 Three basic flavours:

Operational - specification is executable abstraction of the implementation
 good for rapid prototyping
 e.g., Lisp, Prolog, Smalltalk

 State-based - views a program as a (large) data structures whose state
can be altered by procedure calls…

 … using pre/post-conditions to specify the effect of procedures
 e.g., VDM, Z

 Algebraic - views a program as a set of abstract data structures with a set
of operations…

 … operations are defined declaratively by giving a set of axioms
 e.g., Larch, CLEAR, OBJ

 Developed for specifying programs
 Programs are formal, man-made objects

 … and can be modeled precisely in terms of input-output behaviour
 But in RE we’re more concerned with:

 real-world concepts, stakeholders, goals, loosely define problems, environments
 So these languages are NOT appropriate for RE

 but people fail to realise that requirements specification ≠ program specification
10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(2) Reactive System Modeling
 modeling how a system should behave

 General approach:
 Model the environment as a state machine
 Model the system as a state machine
 Model safety, liveness properties of the machine as temporal logic assertions
 Check whether the properties hold of the system interacting with its environment

 Examples:
 Statecharts

 Harel’s notation for modeling large systems
 Adds parallelism, decomposition and conditional transitions to STDs

 RSML
 Heimdahl & Leveson’s Requirements State Machine Language
 Adds tabular specification of complex conditions to Statecharts

 A7e approach
 Major project led by Parnas to formalize A7e aircraft requirements spec
 Uses tables to specify transition relations & outputs

 SCR
 Heitmeyer et. al. “Software Cost Reduction”
 Extends the A7e approach to include dictionaries & support tables

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(3) Formal Conceptual Modeling
 General approach

model the world beyond functional specifications
 a specification is prescriptive, concentrating on desired properties of the machine
 but we also need to capture an understanding of the application domain
 hence build models of humans’ knowledge/beliefs about the world

make use of abstraction & refinement as structuring primitives

 Examples:
 RML - Requirements Modeling Language

 Developed by Greenspan & Mylopoulos in mid-1980s
 First major attempt to use knowledge representation techniques in RE
 Essentially an object oriented language, with classes for activities, entities and

assertions
 Uses First Order Predicate Language as an underlying reasoning engine

 Telos
 Extends RML by creating a fully extensible ontology
 meta-level classes define the ontology (the basic set is built in)

 Albert II
 developed by Dubois & du Bois in the mid-1990s
 Models a set of interacting agents that perform actions that change their state
 uses an object-oriented real-time temporal logic for reasoning

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Using Formal Methods
 Selective use of Formal Methods

 Amount of formality can vary
 Need not build complete formal models

 Apply to the most critical pieces
 Apply where existing analysis techniques are weak

 Need not formally analyze every system property
 E.g. check safety properties only

 Need not apply FM in every phase of development
 E.g. use for modeling requirements, but don’t formalize the system design

 Can choose what level of abstraction (amount of detail) to model

 Lightweight Formal Methods
 Have become popular as a means of getting the technology transferred
 Two approaches

 Lightweight use of FMs - selectively apply FMs for partial modeling
 Lightweight FMs - new methods that allow unevaluated predicates


