%" University of Toronto Department of Computer Science

¥ Lecture 11: How Much Formality?

Last Week:
Change and
Evolution
Software Evolution
Traceability
Inconsistency

This Week:

How much formality?
Formal Modeling Techniques
Appropriate Uses of FM
Tips on formal modeling

The End!

v Formal Methods in RE

©2000-2003, Steve Easterbrook

% University of Toronto

Department of Computer Science

-»What to formalize in RE?

“models of requirements knowledge (so we can reason about them)
Yspecifications of requirements (so we can document them precisely)

Why formalize in RE? Why people don't formalize in RE

% To remove ambiguity and improve % Formal Methods tend to be lower level
precision than other analysis techniques

& Provides a basis for verification that > They force you to include too much detail
the requirements have been met % Formal Methods tend to concentrate on

consistent, correct models

> ..but most of the time your models are
inconsistent, incorrect, incomplete...

% Allows us to reason about the

requirements
> Properties of formal requirements models

can be checked automatically % People get confused about which tools
> Can test for consistency, explore the are appropriate:
consequences, efc. > E.g. modeling program behaviour vs.
% Allows us to animate/execute the modeling the requirements
requirements > formal methods advocates get too attached
> Helps with visualization and validation to one tooll
% Will have to formalize eventually anyway % Formal methods require more effort
> RE is all about bridging from the informal > ...and the payoff is deferred

world to_a formal machine domain

" ©2000-2003, Steve Easterbrook 2

% University of Totonto

)

Department of Computer Science

What are Formal Methods?

- Broad View (Leveson)
% application of discrete mathematics to software engineering
% _.involves modeling and analysis
% _.with an underlying mathematically-precise notation

- Narrow View (Wing)

% Use of a formal language
> a set of strings over some well-defined alphabet, with rules for distinguishing
which strings belong to the language
% Formal reasoning about formulae in the language
> E.g. formal proofs: use axioms and proof rules to demonstrate that some formula
is in the language

- For requirements modeling...

% A notation is formal if:
> ..it comes with a formal set of rules which define its syntax and semantics.
» ..the rules can be used to analyse expressions to determine if they are
syntactically well-formed or to prove properties about them.

)

©2000-2003, Steve Easterbrook 3

%" University of Totonto Department of Computer Science

Varieties of formal analysis

- Consistency analysis and typechecking

% “Is the formal model well-formed?”
> [assuming that we only use modeling languages where “well-formedness” is a
useful thing to check]

- Validation:
% Animation of the model on small examples
% Formal challenges:
> “if the model is correct then the following property should hold..."
% 'What if* questions:
> reasoning about the consequences of particular requirements:
> reasoning about the effect of possible changes

% State exploration
» E.g. use a model checking to find traces that satisfy some property

% Checking application properties:
> “will the system ever do the following..."”

- Verifying design refinement
> “does the design meet the requirements?”

©2000-2003, Steve Easterbrook 4

% University of Toronto

T

Department of Computer Science
Three different models??

a model of the
environment
is
R: satisfied 5
by 3
a model w
»
of the]
requirements
a model of
the software
behaviour
© 2000-2003, Steve Easterbrook 5

T

% University of Toronto

Department of Computer Science

FM in practice

e From Shuttle Study [Crow & DiVito 1996]

% More errors found in the process of formalizing the requirements than were
found in the formal analysis
» Formalization forces you to be precise and explicit, hence reveals problems
» Formal analysis then finds fewer, but more subtle problems

% Typical errors found include:
> inconsistent interfaces
> incorrect requirements (system does the wrong thing in response to an input)
» clarity/maintainability problems

Issue Severity | With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4
©2000-2003, Steve Easterbrook 6

%" University of Totonto Department of Computer Science

¥ How do FMs differ?

- Mathematical Foundation

% Logic
> first order predicate logic - e.g. RML
> temporal logic - e.g. Albert II, SCR, KAOS
» multi-valued logic - e.g. Xchek

% Other
> algebraic languages - e.g. Larch
> set theory - e.g. Z

- Ontology
% fixed
> states, events, actions - e.g. SCR
> entities, activities, assertions - e.g. RML
% extensible
» meta language for defining new concepts - e.g. Telos

- Treatment of Time
% State/event models
> time as a discrete sequence of events - e.g. SCR
> time as quantified intervals - e.g. KAOS
% Time as a first class object
> meta-level class to represent time - e.g. Telos
©2000-2003, Steve Easterbrook 7

)

%" University of Totonto Department of Computer Science

Three traditions ...

Formal Specification Languages Applicability to RE is poor
% Grew out of work on program verification > No abstraction or structuring
% Spawned many general purpose specification languages > closely ’*'ed to program
> Suitable for specifying the behaviour of program units semantics
% Key technologies: Type checking, Theorem proving Examples: Larch, Z, VDM

Reactive System Modeling
% Grew out of a need to capture dynamic models of
system behaviour

Applicability to RE is good
> modeling languages were
% Focus is on reactive systems (e.g. real-time, developed specifically for RE
embedded control systems) Examples: Statecharts, RSML,
> support reasoning about safety, liveness, performance(?) Parnas-tables, SCR, ..
> provide a precise requirements specification language

% Key technologies: Consistency checking, Model checking

Formal Conceptual Modeling

% Grew out of a concern for capturing real-world Applicability to RE is excellent
knowledge in RE » modeling schemes capture key
% Focus is on modeling domain entities, activities, requirements concepts
agents, dctsserf*ﬁonsI ooy for d ol Examples: Reqts Apprentice, RML,
> provide a formal ontology for domain modeling
> use first order predicate logic as the underlying formalism iTelosAIGer: BT
% Key technologies: inference engines, default r ing,
KBS-shells

©2000-2003, Steve Easterbrook 8

% University of Toronto

(1) Formal Specification Languages

- Three basic flavours:

% Operational - specification is executable abstraction of the implementation
» good for rapid prototyping
> e.g., Lisp, Prolog, Smalltalk
% State-based - views a program as a (large) data structures whose state
can be altered by procedure calls...
> ... using pre/post-conditions to specify the effect of procedures
> e.g., VDM, Z
% Algebraic - views a program as a set of abstract data structures with a set
of operations...
> .. operations are defined declaratively by giving a set of axioms
> e.g., Larch, CLEAR, OBJ

- Developed for specifying programs
% Programs are formal, man-made objects
> .. and can be modeled precisely in terms of input-output behaviour
% But in RE we're more concerned with:
> real-world concepts, stakeholders, goals, loosely define problems, environments
% So these languages are NOT appropriate for RE

> but people fail to realise that requirements specification = program specification
©2000-2003, Steve Easterbrook

Department of Computer Science

% University of Toronto

(2) Reactive System Modeling

- modeling how a system should behave

% General approach:
> Model the environment as a state machine
> Model the system as a state machine
> Model safety, liveness properties of the machine as temporal logic assertions
» Check whether the properties hold of the system interacting with its environment

- Examples:
% Statecharts
> Harel's notation for modeling large systems
» Adds parallelism, decomposition and conditional transitions to STDs
% RSML
> Heimdahl & Leveson's Requirements State Machine Language
» Adds tabular specification of complex conditions to Statecharts
% A7e approach
> Major project led by Parnas to formalize A7e aircraft requirements spec
> Uses tables to specify transition relations & outputs
% SCR
> Heitmeyer et. al. "Software Cost Reduction”
» Extends the A7e approach to include dictionaries & support tables

Department of Computer Science

©2000-2003, Steve Easterbrook

% University of Totonto Department of Computer Science

¥ (3) Formal Conceptual Modeling

- General approach

% model the world beyond functional specifications
> a specification is prescriptive, concentrating on desired properties of the machine
> but we also need to capture an understanding of the application domain
> hence build models of humans' knowledge/beliefs about the world

% make use of abstraction & refinement as structuring primitives

- Examples:

% RML - Requirements Modeling Language
> Developed by Greenspan & Mylopoulos in mid-1980s
» First major attempt to use knowledge representation techniques in RE
> Essentially an object oriented language, with classes for activities, entities and

assertions

» Uses First Order Predicate Language as an underlying reasoning engine

% Telos
> Extends RML by creating a fully extensible ontology
> meta-level classes define the ontology (the basic set is built in)

% Albert IT
> developed by Dubois & du Bois in the mid-1990s
> Models a set of interacting agents that perform actions that change their state
> uses an object-oriented real-time temporal logic for reasoning

©2000-2003, Steve Easterbrook

% University of Totonto

¥

Using Formal Methods

- Selective use of Formal Methods
% Amount of formality can vary
% Need not build complete formal models
> Apply to the most critical pieces
> Apply where existing analysis techniques are weak
% Need not formally analyze every system property
> E.g. check safety properties only
% Need not apply FM in every phase of development
> E.g. use for modeling requirements, but don't formalize the system design
% Can choose what level of abstraction (amount of detail) to model

- Lightweight Formal Methods

% Have become popular as a means of getting the technology transferred
% Two approaches

> Lightweight use of FMs - selectively apply FMs for partial modeling

> Lightweight FMs - new methods that allow unevaluated predicates

Department of Computer Science

©2000-2003, Steve Easterbrook

