
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 4:
Showing the architecture

 Coupling and Cohesion
 UML Package Diagrams
 Software Architectural Styles:

 Layered Architectures
 Pipe-and-filter
 Object Oriented Architecture
 Implicit Invocation
 Repositories

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Coupling and Cohesion
Architectural Building blocks:

A good architecture:
Minimizes coupling between modules:

Goal: modules don’t need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module
Goal: the contents of each module are strongly inter-related
High cohesion makes a module easier to understand

module module
connector

X

2

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Conway’s Law

“The structure of a software system
reflects the structure of the organisation

that built it”

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

People

Socio-Technical Congruence

C

G

B

E

F

D

A

L

JH

IK

Modules

3
7

2

5 6

4

1

12

10
8

9

11

See: Valetto, et al., 2007.

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

People

Socio-Technical Congruence

C

G

B

E

F

D

A

L

JH

IK

Modules

3
7

2

5 6

4

1

12

10
8

9

11

See: Valetto, et al., 2007.

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Software Architecture
A software architecture defines:

the components of the software system
how the components use each other’s functionality and data
How control is managed between the components

An example: client-server
Servers provide some kind of service; clients request and use services
applications are located with clients
data storage is treated as a server

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Application Logic

Storage Layer

Presentation Layer

3-layer architecture

Java
AWT

Application
Views

Control
Objects

Business
Logic

Query
Engine

DBMS

File
Managemt

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

UML Packages
We need to represent our architectures

UML elements can be grouped together in packages
Elements of a package may be:

 other packages (representing subsystems or modules);
 classes;
 models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

Each element of a UML model is owned by a single package

Criteria for decomposing a system into packages:
Ownership

who is responsible for working on which diagrams
Application

each problem has its own obvious partitions;
Clusters of classes with strong cohesion

e.g., course, course description, instructor, student,…
Or use an architectural pattern to help find a suitable decomposition

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

java

Package notation

util

util

 DateDate

util

java::util

 Date

util

 Date java::util::Date

named package package with list
of contained classes

package containing
a class diagram

package with
qualified name nested packages

package with
fully qualified name

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Towards component-based design

control

 Button

 Check box

 <<interface>>
 OnOff

turnOn()
turnOff()
isOn()
isOff()

 Furnace::Heater Lighting::Light

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Or use Component Diagrams…

 Till

 Sales Server

 message
queue

 transaction
processor

 accounting

driver

 accounting
system

sales
message

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Dependency cycles…

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Application Logic Layer Package

Storage Layer Package

Presentation Layer Package

Architectural Patterns

E.g. 3 layer
architecture:

Presentation
Layer

Application
Logic Layer

Storage
Layer

Java AWT

Application
Windows

Control
Objects

Business
Objects

Object to
RelationalJDBC

Java SQL

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Or to show the interfaces…

Application Logic Layer Package

Storage Layer Package

Presentation Layer Package

Java AWT

Application
Windows

Control
Objects

Business
Objects

Object to
Relational

JDBC

Java SQL

E.g. 3 layer
architecture:

Presentation
Layer

Application
Logic Layer

Storage
Layer

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

kernal

Layered Systems

Examples
Operating Systems
communication protocols

Interesting properties
Support increasing levels of abstraction during design
Support enhancement (add functionality) and re-use
can define standard layer interfaces

Disadvantages
May not be able to identify (clean) layers

kernal

utilities
application layer

users

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Open vs. Closed Layered Architecture
closed architecture

each layer only uses services of the layer
immediately below;

Minimizes dependencies between layers and
reduces the impact of a change.

open architecture
a layer can use services from any lower layer.
More compact code, as the services of lower

layers can be accessed directly
Breaks the encapsulation of layers, so increase

dependencies between layers

Layer N
Layer N-1

Layer 2
Layer 1

Layer N
Layer N-1

Layer 2
Layer 1

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

How many layers?
2-layers:

application layer
database layer
e.g. simple client-server model

3-layers:
separate out the business logic

helps to make both user interface and
database layers modifiable

4-layers:
Separates applications from the domain
entities that they use:

boundary classes in presentation layer
control classes in application layer
entity classes in domain layer

Partitioned 4-layers
identify separate applications

Application (client)
Database (server)

Presentation layer (user interface)
Business Logic

Database

Presentation layer (user interface)
Applications

Domain Entities
Database

UI1 UI2 UI3 UI4

App1 App2 App3 App4

Domain Entities

Database

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Pipe-and-filter

Examples:
UNIX shell commands
Compilers:

Lexical Analysis -> parsing -> semantic analysis -> code generation
Signal Processing

Interesting properties:
filters don’t need to know anything about what they are connected to
filters can be implemented in parallel
behaviour of the system is the composition of behaviour of the filters

specialized analysis such as throughput and deadlock analysis is possible

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

filter filter

filter

filter filter

filter

pipe pipe

pipe

pipe pipe

pipe

10

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Object Oriented Architectures

Examples:
abstract data types

Interesting properties
data hiding (internal data representations are not visible to clients)
can decompose problems into sets of interacting agents
can be multi-threaded or single thread

Disadvantages
objects must know the identity of objects they wish to interact with

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

Source: Adapted from Shaw & Garlan 1996, p22-3.

This
is

not
UML!

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Variant 1: Client Server

Interesting properties
Is a special case of the previous pattern object oriented architecture
Clients do not need to know about one another

Disadvantages
Client objects must know the identity of the server

client

client

client

method
invocation

method
invocation

method
invocation

Server

This
is

not
UML!

11

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

Variant 2: Object Brokers

server

server

broker

clientclient

client

Interesting properties
Adds a broker between the clients and servers
Clients no longer need to know which server they are using
Can have many brokers, many servers.

Disadvantages
Broker can become a bottleneck
Degraded performance

This
is

not
UML!

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

Event based (implicit invocation)

Examples
debugging systems (listen for particular breakpoints)
database management systems (for data integrity checking)
graphical user interfaces

Interesting properties
announcers of events don’t need to know who will handle the event
Supports re-use, and evolution of systems (add new agents easily)

Disadvantages
Components have no control over ordering of computations

broadcast
medium

agent

agent

agent

agent

announce
event

announce
event

listen for
event

listen for
eventbroadcast

medium

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

This
is

not
UML!

12

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Repositories

Examples
databases
blackboard expert systems
programming environments

Interesting properties
can choose where the locus of control is (agents, blackboard, both)
reduce the need to duplicate complex data

Disadvantages
blackboard becomes a bottleneck

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 24

Variant: Model-View-Controller

controller

controller
view

m
odel

view propagate propagate

update update

accessaccess

Properties
One central model, many views (viewers)
Each view has an associated controller
The controller handles updates from the user of the view
Changes to the model are propagated to all the views

