

Lecture 10: **Managing Risk**

General ideas about Risk

Risk Management

Identifying Risks Assessing Risks

Case Study:

Mars Polar Lander

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

University of Toronto

Department of Computer Science

Risk Management

About Risk

Risk is "the possibility of suffering loss" Risk itself is not bad, it is essential to progress The challenge is to manage the amount of risk

Two Parts:

Risk Assessment Risk Control

Useful concepts:

For each risk: Risk Exposure

RE = p(unsat. outcome) X loss(unsat. outcome) For each mitigation action: Risk Reduction Leverage

RRL = (REbefore - REafter) / cost of intervention

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Risk Assessment

Quantitative:

Measure risk exposure using standard cost & probability measures Note: probabilities are rarely independent

Qualitative:

Develop a risk exposure matrix Eg for NASA:

		Likelihood of Occurrence		
		Very likely	Possible	Unlikely
Undesirable outcome	(5) Loss of Life	Catastrophic	Catastrophic	Severe
	(4) Loss of Spacecraft	Catastrophic	Severe	Severe
	(3) Loss of Mission	Severe	Severe	High
	(2) Degraded Mission	High	Moderate	Low
	(1) Inconvenience	Moderate	Low	Low

University of Toronto

Department of Computer Science

Identifying Risk: Checklists

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Personnel Shortfalls

use top talent team building training

Unrealistic schedules/budgets

multisource estimation designing to cost requirements scrubbing

Developing the wrong Software functions

better requirements analysis organizational/operational analysis

Developing the wrong User Interface

prototypes, scenarios, task analysis

Gold Plating

requirements scrubbing cost benefit analysis designing to cost

e: Adapted from Boehm, 1989 Continuing stream of requirements changes

high change threshold information hiding incremental development

Shortfalls in externally furnished components

early benchmarking inspections, compatibility analysis

Shortfalls in externally performed tasks

pre-award audits competitive designs

Real-time performance shortfalls

targeted analysis

simulations, benchmarks, models

Straining computer science capabilities

technical analysis checking scientific literature

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Principles of Risk Management Source: Adapted from SEI Continuous Risk Management Guidebook

Global Perspective

View software in context of a larger system

For any opportunity, identify both:

Potential value

Potential impact of adverse results

Forward Looking View

Anticipate possible outcomes **Identify uncertainty** Manage resources accordingly

Open Communications

Free-flowing information at all project levels

Value the individual voice Unique knowledge and insights

Integrated Management

Project management is risk management!

Continuous Process

Continually identify and manage risks Maintain constant vigilance

Shared Product Vision

Everybody understands the mission Common purpose

Collective responsibility Shared ownership

Focus on results

Teamwork

Work cooperatively to achieve the common goal

Pool talent, skills and knowledge

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Case Study: Mars Climate Orbiter

Launched

11 Dec 1998

Mission

interplanetary weather satellite communications relay for Mars Polar Lander

Fate:

Arrived 23 Sept 1999 No signal received after initial orbit insertion

Cause:

Faulty navigation data caused by failure to convert imperial to metric units

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Signal was never regained after the predicted 21 minute occultation
Subsequent analysis estimates first periapse of 57km

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

MCO entered Mars occultation 49 seconds earlier than predicted

1 hour prior: this was down to 110km

Minimum periapse considered survivable is 85km

Contributing Factors

For 4 months, AMD data not used (file format errors)

Navigators calculated data by hand File format fixed by April 1999 Anomalies in the computed trajectory became apparent almost immediately

Limited ability to investigate:

Thrust effects measured along line of sight using doppler shift

AMD thrusts are mainly perpendicular to line of sight

Poor communication

Navigation team not involved in key design decisions Navigation team did not report the anomalies in the issue tracking system

Inadequate staffing

Operations team monitoring 3 missions simultaneously (MGS, MCO and MPL)

Operations Navigation team unfamiliar with spacecraft

Different team from development & test Did not fully understand significance of the anomalies

Surprised that AMD was performed 10-14 times more than expected

Inadequate Testing

Software Interface Spec not used during unit test of small forces software End-to-end test of ground software was never completed

Ground software considered less critical

Inadequate Reviews

Key personnel missing from critical design reviews

Inadquate margins...

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

-

Department of Computer Science

Mars Global Surveyor

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Lessons?

If it doesn't behave how you expect, it's not safe (yes, really!)

If your teams don't coordinate, neither will their software (See: Conway's Law)

With software, everything is connected to everything else -- every subsystem is critical

© 2008 Steve Easterbrook. This presentation is available free for

14

University of Toronto

Department of Computer Science

Sidetrack: SNAFU principle

Full communication is only possible among peers; Subordinates are too routinely rewarded for telling pleasant lies, rather than the truth.

Not a good idea to have the IV&V teams reporting to the program office!!

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Symptoms of failure to manage risk:

Are overconfidence and complacency common?

the Titanic effect - "it can't happen to us!"

Do managers assume it's safe unless someone can prove otherwise?

Are warning signs routinely ignored?

What happens to diagnostic data during operations?

Does the organisation regularly collect data on anomalies?

Are all anomalies routinely investigated?

Is there an assumption that risk decreases?

E.g. Are successful missions used as an argument to cut safety margins?

Are the risk factors calculated correctly?

E.g. What assumptions are made about independence between risk factors?

Is there a culture of silence?

What is the experience of whistleblowers? (Can you even find any?)

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.