
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 18:
Structure-based Testing

Test Case First Strategy
White box testing:

Statement Coverage
Branch Coverage
Condition Coverage
Data Path Coverage

Black box testing:
Use Cases as Test Cases
Testing with good and bad data

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Developer Testing
Write the test cases first

minimize the time to defect discovery
forces you to think carefully about the requirements first
exposes requirements problems early
supports a “daily smoke test”

Limitations of Developer Testing
Emphasis on clean tests (vs. dirty tests)

immature organisations have 1 dirty : 5 clean
mature organisations have 5 dirty : 1 clean

Developers overestimate test coverage
Developers tend to focus on statement coverage rather than …

Summary:
Test-case first strategy is extremely valuable
Test-case first strategy is not enough

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Random testing isn’t enough
Structurally…

Test strategy: pick random
values for x and y and test
‘equals’ on them

But:
...we might never test the first

branch of the ‘if’ statement

boolean equal (int x, y) {
/* effects: returns true if
x=y, false otherwise

*/
if (x == y)
return(TRUE)

else
return(FALSE)

}

int maximum (list a)
/* requires: a is a list of
integers
effects: returns the maximum
element in the list

*/

Functionally…

Try these test cases:

Why is this not enough?

Input Output Correct?

3 16 4 32 9 32 Yes

9 32 4 16 3 32 Yes

22 32 59 17 88 1 88 Yes

1 88 17 59 32 22 88 Yes

1 3 5 7 9 1 3 5 7 9 Yes

7 5 3 1 9 7 5 3 1 9 Yes

9 6 7 11 5 1 Yes

5 11 7 6 9 1 Yes

561 13 1024 79 86 222 97 1024 Yes

97 222 86 79 1024 13 561 1024 Yes

Source: Adapted from Horton, 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Testing in every state?

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Structured Basis Testing
The minimal set of tests to cover every branch
How many tests?

start with 1 for the straight path
add 1 for each of these keywords: if, while, repeat, for, and, or
add 1 for each branch of a case statement

Example
int midval (int x, y, z) {
/* effects: returns median
value of the three inputs

*/
if (x > y) {
if (x > z) return x
else return z }

else {
if (y > z) return y
else return z } }

Count 1 + 3 ‘if’s = 4 test cases
Now choose the cases to exercise the 4

paths:
e.g. x=3, y=2, z=1

x=3, y=2, z=4
x=2, y=3, z=2
x=2, y=3, z=4

Source: Adapted from McConnell 2004, p506-508

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Complex Conditions

If ((a) & (b) | (c)) then…

true false

Branch Coverage:

If ((a) & (b) | (c)) then…

true false true false true false

Condition Coverage:

If ((a) & (b) | (c)) then…

true false true false

But can you show that
each part has an independent

effect on the outcome?

Source: Adapted from Christopher Ackermann’s slides

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

MC/DC Coverage
Show that each basic condition can affect the result

Source: Adapted from Christopher Ackermann’s slides

If ((a) & (b) | (c)) then…

Choose a minimal set:
Eg. {2, 3, 4, 6}
or {2, 3, 4, 7}

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

MC/DC versus Branch Coverage
Compiler can translate conditions in the object code:

Test sets for condition/decision coverage:
{1, 8} or {2, 7} or {3, 6}
Covers all paths in the source code, but not all paths in the object code

Test sets for Modified Condition/Decision Coverage
{2, 3, 4, 6} or {2, 3, 4, 7}
Covers all paths in the object code

Source: Adapted from Christopher Ackermann’s slides

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

About MC/DC
Advantages:

Linear growth in the number of conditions
Ensures coverage of the object code
Discovers dead code (operands that have no effect)

Mandated by the US Federal Aviation Administration
In avionics, complex boolean expressions are common
Has been shown to uncover important errors not detected by other test

approaches

It’s expensive
E.g. Boeing 777
approx 4 million lines of code, 2.5 million newly developed
approx 70% of this is Ada (rest is C or assembler)
Total cost of aircraft development: $5.5 billion
Cost of testing to MC/DC criteria: approx $1.5 billion

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Dataflow testing
Things that happen to data:

Defined - data is initialized but not yet used
Used - data is used in a computation
Killed - space is released
Entered - working copy created on entry to a method
Exited - working copy removed on exit from a method

Normal life:
Defined once, Used a number of times, then Killed

Potential Defects:
D-D: variable is defined twice
D-Ex, D-K: variable defined but not used
En-K: destroying a local variable that wasn’t defined?
En-U: for local variable, used before it’s initialized
K-K: unncessary killing - can hang the machine!
K-U: using data after it has been destroyed
U-D: redefining a variable after is has been used

Source: Adapted from McConnell 2004, p506-508

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Testing all D-U paths
The minimal set of tests to cover every D-U path
How many tests?

1 test for each path from each definition to each use of the variable

Example
if (Cond1) {
 x = a;
}
else {
 x = b;
}
if (Cond2) {
 y = x + 1
}
else {
 y = x - 1;
}

Structured Basis Testing:
2 test cases is sufficient
Case 1: Cond1=true, Cond2=true
Case 2: Cond1=false, Cond2=false

All DU testing:
Need 4 test cases

Source: Adapted from McConnell 2004, p506-508

D:

D:

U:

U:

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Boundary Checking
Boundary Analysis

Every boundary needs 3 tests:
Example:

test for MAX+1, MAX-1 and MAX

Compound Boundaries
When several variables have combined boundaries

Test when lots of array entries are close to the max?
Test when lots of entries are close to zero?

max boundary
below
max

boundary
below
maxif (x < MAX) {

… }

for (i=0; i<Num; i++) {
 if (a[i] < LIMIT) {
 y = y+a[i];

 }
}

Source: Adapted from McConnell 2004, p506-508

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Data Classes
Classes of Bad Data

Too little data (or no data)
Too much data
The wrong kind of data (invalid data)
The wrong size of data
Uninitialized data

Classes of Good Data
Nominal cases - middle of the road, expected values
Minimum normal configuration
Maximum normal configuration
Compatibility with old data

Source: Adapted from McConnell 2004, p506-508

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Generating Tests from Use Cases
1 Test the Basic Flow
2 Test the Alternate Flows

Buy a Product

Precondition: Customer has successfully logged in

Main Success Scenario:
Customer browses catalog and selects items to buy
Customer goes to check out
Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information
Customer fills in credit card information
System authorizes purchase
System confirms sale immediately
System sends confirming email to customer

Postcondition: Payment was received in full, customer has received confirmation

Extensions:
3a: Customer is Regular Customer
 .1 System displays current shipping, pricing and billing information
 .2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card
 .1 Customer may reenter credit card information or may cancel

Buy a
Product

Customer

Start Use Case

End Use Case

End Use Case End Use Case

Basic Flow

Alternate Flow 1

Alternate
Flow 2

Alternate
Flow 3

Alternate
Flow 4

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Generating Tests from Use Cases

Buy a Product

Precondition: Customer has successfully logged in

Main Success Scenario:
Customer browses catalog and selects items to buy
Customer goes to check out
Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information
Customer fills in credit card information
System authorizes purchase
System confirms sale immediately
System sends confirming email to customer

Postcondition: Payment was received in full, customer has received confirmation

Extensions:
3a: Customer is Regular Customer
 .1 System displays current shipping, pricing and billing information
 .2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card
 .1 Customer may reenter credit card information or may cancel

Buy a
Product

Customer

3 Test the Postconditions
Are they met on all paths

through the use case?
Are all postconditions met?

4 Break the Preconditions
What happens if this is not met?
In what ways might it not be

met?

5 Identify options for each
variable

select combinations of options
for each test case

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Classes of input variables
values that trigger alternative
flows

e.g. invalid credit card
e.g. regular customer

trigger different error messages
e.g. text too long for field
e.g. email address with no “@”

inputs that cause changes in the
appearance of the UI

e.g. a prompt for additional information

inputs that causes different
options in dropdown menus

e.g. US/Canada triggers menu of
states/provinces

cases in a business rule
e.g. No next day delivery after 6pm

border conditions
if password must be min 6 characters,
test password of 5,6,7 characters

Check the default values
e.g. when cardholder’s name is filled
automatically

Override the default values
e.g. when the user enters different name

Enter data in different formats
e.g. phone numbers:
(416) 555 1234
416-555-1234
416 555 1234

Test country-specific
assumptions

e.g. date order: 5/25/08 vs. 25/5/08

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Limits of Use Cases as Test Cases
Use Case Tests good for:

User acceptance testing
“Business as usual” functional testing
Manual black-box tests
Recording automated scripts for common
scenarios

Limitations of Use Cases
Likely to be incomplete
Use cases don’t describe enough detail
of use
Gaps and inconsistencies between use
cases
Use cases might be out of date
Use cases might be ambiguous

Defects you won’t discover:
System errors (e.g. memory leaks)
Things that corrupt persistent data
Performance problems
Software compatibility problems
Hardware compatibility problems

