
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 19:
Automated Testing

Other testing strategies:
Quicktests
Exploratory Testing

Automated testing
JUnit and family
Testing GUI-based software

Test coverage for Object-Oriented Systems
When to stop testing

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Quick Tests
A quick, cheap test

e.g. Whittaker “How to Break Software”

Examples:
The Shoe Test (key repeats in any input field)
Variable boundary testing
Variability Tour: find anything that varies, and vary it as far as possible in every

dimension

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Whittaker’s QuickTests
Explore the input domain

1. Inputs that force all the error
messages to appear

2. Inputs that force the software to
establish default values

3. Explore allowable character sets and
data types

4. Overflow the input buffers
5. Find inputs that may interact, and test

combinations of their values
6. Repeat the same input numerous

times

Explore the outputs
7. Force different outputs to be

generated for each input
8. Force invalid outputs to be generated
9. Force properties of an output to

change
10.Force the screen to refresh

Explore stored data constraints
11.Force a data structure to store too

many or too few values
12.Find ways to violate internal data

constraints

Explore feature interactions
13.Experiment with invalid

operator/operand combinations
14.Make a function call itself recursively
15.Force computation results to be too

big or too small
16.Find features that share data

Vary file system conditions
17.File system full to capacity
18.Disk is busy or unavailable
19.Disk is damaged
20. invalid file name
21.vary file permissions
22.vary or corrupt file contents

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Interference Testing
Generate Interrupts

From a device related to the task
From a device unrelated to the task
From a software event

Change the context
Swap out the CD
Change contents of a file while program
is reading it
Change the selected printer
Change the video resolution

Cancel a task
Cancel at different points of completion
Cancel a related task

Pause the task
Pause for short or long time

Swap out the task
e.g. change focus to another application
e.g. load processor with other tasks
e.g. put the machine to sleep
e.g. swap out a related task

Compete for resources
e.g. get the software to use a resource
that is already being used
e.g. run the software while another task is
doing intensive disk access

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Exploratory Testing
Start with idea of quality:

Quality is value to some person

So a defect is:
something that reduces the value of the
software to a favoured stakeholder
or increases its value to a disfavoured
stakeholder

Testing is always done on behalf
of stakeholders

Which stakeholder this time?
e.g. programmer, project manager,
customer, marketing manager, attorney…
What risks are they trying to mitigate?

You cannot follow a script
It’s like a crime scene investigation
Follow the clues…
Learn as you go…

Kaner’s definition:
Exploratory testing is

…a style of software testing
…that emphasizes personal
freedom and responsibility

…of the tester
…to continually optimize the value

of their work
…by treating test-related learning,

test design, and test execution

…as mutually supportive activities
…that run in parallel throughout the

project

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Test Ideas
Function Testing: Test what it can do.

 Domain Testing: Divide and conquer the data.

 Stress Testing: Overwhelm the product.

 Flow Testing: Do one thing after another.

 Scenario Testing: Test to a compelling story.

 Claims Testing: Verify every claim.

 User Testing: Involve the users.

 Risk Testing: Imagine a problem, then find it.

 Automatic Testing: Write a program to generate and run a zillion tests.

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Automated Testing Strategy

Setup

Exercise

Verify

Teardown

SUT
(System
under
Test)

DOC
(depended-On

Component)

Initialize

Exercise
(with return value)

Get State

Get Something
(with return value)

Do something
(no return value)

Direct control points

Indirect control point

Direct observation points

Indirect observation points
TestCase Fixture

Test Double

Source: Adapted from Meszaros 2007, p66

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Test Order?

Inside
Out

Outside
In

Source: Adapted from Meszaros 2007, p35

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

How JUnit works
Source: Adapted from Meszaros 2007, p77

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

How JUnit works
Source: Adapted from Meszaros 2007, p77

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Assertion methods in JUnit
Single-Outcome Assertions

fail;

Stated Outcome Assertions
assertNotNull(anObjectReference);
assertTrue(booleanExpression)

Expected Exception Assertions
assert_raises(expectedError) {codeToExecute };

Equality Assertions
assertEqual(expected, actual);

Fuzzy Equality Assertions
assertEqual(expected, actual, tolerance);

Source: Adapted from Meszaros 2007, p365

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Principles of Automated Testing
Write the Test Cases First
Design for Testability
Use the Front Door First

test via public interface
avoid creating back door manipulation

Communicate Intent
Tests as Documentation!
Make it clear what each test does

Don’t Modify the SUT
avoid test doubles
avoid test-specific subclasses
(unless absolutely necessary)

Keep tests Independent
Use fresh fixtures
Avoid shared fixtures

Isolate the SUT
Minimize Test Overlap
Verify One Condition Per Test
Test Concerns Separately
Minimize Untestable code

e.g. GUI components
e.g. multi-threaded code
etc

Keep test logic out of production
code

No test hooks!

Source: Adapted from Meszaros 2007, p39-48

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Testing interactive software
1) Start UMLet

2) Click on
 File -> Open

3) select test2.uxf

4) click Open

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Automating the testing
Challenges for automated testing:

Synchronization - How do we know a window popped open that we can click in?
Abstraction - How do we know it’s the right window?
Portability - What happens on a display with different resolution / size, etc

Units

Functionality

Presentation

Automated
tests

Manual
tests

Source: Adapted from Zeller 2006, p57

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Presentation Layer
Script the mouse and keyboard events

script can be recorded (e.g. “send_xevents @400,100”)
script is write-only and fragile

Script at the application function level
E.g. Applescript: tell application ”UMLet" to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application…

Source: Adapted from Zeller 2006, chapter 3

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Circular Dependencies

Core

+print_to_file()

UserPresentation

+confirm_loss()

void print_to_file(string filename)
{
 if (path_exists(filename)) {
 // FILENAME exists; ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }
 // Proceed printing to FILENAME...
}

Source: Adapted from Zeller 2006, chapter 3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Revised Dependency

Core

+print_to_file()

Presentation

+confirm_loss()

UserPresentation

+confirm_loss()

AutoPresentation

+confirm_loss()

ask user return true;

Source: Adapted from Zeller 2006, chapter 3

10

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Testing Object Oriented Code
Encapsulation

If the object hides it’s internal state, how do we test it?
E.g. add methods only to be used in testing, which expose internal state
But: how do we know these extra methods are correct?

Inheritance
When a subclass extends a well-tested class, what extra testing is needed?
e.g. Test just the overridden methods?
But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods

Polymorphism
When class A calls class B, it might actually be interacting with any of B’s

subclasses…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Consider this program…

Base

+foo()
+bar()
-helper()

Derived

-helper()

class Base {
 public void foo() {
 … helper(); …
 }
 public void bar() {
 … helper(); …
 }
 private helper() {…}
}

class Derived extends Base {
 private helper() {…}
}

Source: Adapted from IPL 1999

11

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

Test Cases
public void testFoo() {
 Base b = new Base();
 b.foo();
}
public void testBar() {
 Derived d = new Derived();
 d.bar();
}

Base

+foo() -- Exercised in testFoo
+bar() -- Untested!
-helper() -- Exercised in testFoo

Derived

{+foo()} -- Untested!
{+bar()} -- Exercised in testBar
-helper() -- Exercised in testBar inherited methods

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

Extend the test suite

Base

+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar
-helper() -- Exercised in tBF and tBB

Derived

{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar
-helper() -- Exercised in tDF & tDB

public void testBaseFoo() {
 Base b = new Base();
 b.foo();
}
public void testBaseBar() {
 Base b = new Base();
 b.bar();
}
public void testDerivedFoo() {
 Base d = new Derived();
 d.foo();
}
public void testDerivedBar() {
 Derived d = new Derived();
 d.bar();
}

Source: Adapted from IPL 1999

12

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Inheritance Coverage
Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 24

Subclassing the Test Cases

Base

Base methods

DerivedA

inherited methods
new methods

DerivedB

inherited methods
new methods

testBase

Test Base methods

testDerivedA

re-test inherited methods
test new methods

testDerivedB

re-test inherited methods
test new methods

Source: Adapted from IPL 1999

13

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 25

When to stop testing?

Time (e.g. days)

de

fe
ct

s
fo

un
d

Typical testing results The bad news

Number of defects found to date

Pr
ob

ab
ilit

y
of

 m
or

e
de

fe
ct

s

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 26

When to stop testing?
Motorola’s Zero-failure testing model

Predicts how much more testing is needed to establish a given reliability goal
basic model:

failures = ae-b(t)

Reliability estimation process
Inputs needed:

fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far
th = total testing hours up to the last failure

Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

Result gives the number of further failure free hours of testing needed to
establish the desired failure density

if a failure is detected in this time, you stop the clock and recalculate
Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

14

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 27

Fault Seeding
Seed N faults into the software

Start testing, and see how many seeded faults you find
Hypothesis:

Use this to estimate test efficiency
Estimate # remaining faults

Alternatively
Get two teams to test independently
Estimate each team’s test efficiency by:

Detected seeded faults

Total seeded faults

Detected nonseeded faults

Total nonseeded faults
=

Efficiency(team1) =
faults found by team 1

Total number of faults

unknown

Faults found by both teams

Total # faults found by team 2
=

