
1

1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 

CSC302:
Engineering Large Software Systems

Prof Steve Easterbrook
sme@cs.toronto.edu

http://www.cs.toronto.edu/~sme/CSC302

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

About the Course
 Course website

 www.cs.toronto.edu/~sme/CSC302/

 Textbooks
 Fowler: UML Distilled (3rd Edition)

 Lecture Notes
 Available on the course website prior to each lecture

 Coursework
 Carried out in teams of 6 (±1)
 Each team submits one report (per assignment)
 All team members receive the same grade (exceptions can be negotiated)
 Involves an ongoing open source project, using legacy code



2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

About the Course
 Build on what you’ve learned in CSC301

 How do these skills scale up to larger projects?
 What new techniques and processes are needed?

 Important Topics
 advanced modeling (UML)
 project management
 reverse engineering
 requirements analysis
 verification and validation
 software architecture
 (performance modeling and analysis)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Assessment
 4 team assignments:

1. Phase 0: Reverse Engineering / Familiarization (5%)
 3 weeks. Generate models from the legacy code

2. Phase 1: Select and implement change requests (10%)
 3 weeks. Submit analysis of CRs, plus implemented and tested changes

3. Phase 2a: Requirements analysis and test plan (15%)
 4 weeks. Analyse requests for new features, and write test cases

4. Phase 2b: Implement new features and review process (15%)
 3 weeks. Submit implemented and tested features, plus lessons learned report

 2 tests:
 Midterm test (20%)
 Final Exam (35%)

 Must obtain at least 30% on this exam to pass the course.



3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Course Policies
 Assignment Deadlines

 Are very strict (use a U of T medical certificate if you are seriously ill)
 Assignments are due in the first 10 minutes of a tutorial (i.e. 11:20am)
 Daily penalties apply to late work

 Re-grading
 Will only be done by the professor (TAs will not re-grade your work)
 The whole report will be re-graded (not just individual sections)
 Your mark may go up or down

 Communication
 Ask questions in Lectures and Tutorials
 Announcements will appear on the course website. Please check it regularly.
 TAs and instructor will not answer any queries related to the assignments in

the 24 hour period prior to the deadline
 I will rarely respond to email

 Spam filter may kill email from non-UofT adddresses
 I will (try to) answer emailed questions in the next available lecture/tutorial.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Discussion
1. Review of CSC301
2. Your goals for this course
3. Options:

 Bonus for changes accepted back into project base?
 Trade projects at end of phase 1: bonus for popular projects?
 Shorter iterations?
 TA’s as “on-site users”?
 TA’s as management consultants?
 Extra material on project management & Risk assessment?
 NASA Case studies?
 …



4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Summary
 This course addresses the challenge of big projects

 Working with legacy code
 Analyzing problem situations
 Deciding which features can be feasibly implemented
 Delivering quality software systems

 This course is different to most CS courses
 You will be contributing to a much larger project
 You will decide for yourself what is feasible to do
 You will manage your own project risks
 You will figure out how to work in a (large?) team
 You will learn think as an engineer

 Your mileage will vary
 The course evaluations will be extreme:

 “At last - a course that actually taught me something useful”
 “This course should be scrapped - it’s an embarrassment to CS”


