
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 5:
Modeling Software Behaviour

 UML sequence Diagrams
 Comparing Designs
 Explaining Design Patterns
 Style tips

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Things to Model
E.g. Structure of the code

Code Dependencies
Components and couplings

E.g. Behaviour of the code
Execution traces
State machines models of complex objects

E.g. Function of the code
What functions does it provide to the user?

2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Sequence Diagrams

an Order an OrderLine a Product a Customer

calculatePrice getQuantity

getProduct

aProduct

getPricingDetails

calculateBasePrice

calculateDiscounts
getDiscountInfo

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Design Choices…

an Order an OrderLine a Product a Customer

calculatePrice CalculatePrice

discountedValue

getDiscountedValue(an Order)

getBaseValue

getPrice(quantity)

3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Creating and Deleting Objects

a Handler

a Query
Command

a Database
Statement

queryDatabase
new

results

extract results

close

new

execute

results

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Interaction Frames

:Order careful:
Distributor

regular:
Distributor :Messenger

dispatch

dispatch

loop [for each line item]

alt [value > $10,000]

dispatch
[else]

opt [needs confirmation]
confirm

4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

When to use Sequence Diagrams
Comparing Design Options

Shows how objects collaborate to carry out a task
Graphical form shows alternative behaviours

Assessing Bottlenecks
E.g. an object through which many messages pass

Explaining Design Patterns
Enhances structural models
Good for documenting behaviour of design features

Elaborating Use Cases
Shows how the user expects to interact with the system
Shows how the user interface operates

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Comparing Designs

:user :ATM :Bank

Insert Card
Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash
Prompt for amount

Enter amount
Sufficient funds?
Confirm funds

Dispense Cash

Display Menu

End Transaction

Withdraw funds

Return Card

:ATM :Bank

Insert Card
Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash
Prompt for amount

Enter amount
Sufficient funds?

Confirm funds

Dispense Cash

Another Trans?
Decline

Withdraw fundsReturn Card
Print Receipt

Print Receipt

:user

5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Modeling a Design Pattern
E.g. Observer Pattern

For a one-to-many dependency, when you need to maintain consistency
The subject pushes updates to all the observers

 Subject

attach(Observer)
detach(Observer)
Notify()

 concreteSubject
subjectState
getState()
setState()

 Observer

update()

 concreteObserver
observerState
update()

1 *

1

observers

subject {observerState =
this.subject.getState()}

{for all o in observers
 {o.update()} }

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Sequence Diagram for Observer

a Concrete
Subject

x : Concrete
Observer

y : Concrete
Observer

setState()

notify()

update()

update()

getState()

getState()

6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Style Guide
Spatial Layout

Strive for left-to-right ordering of messages
Put proactive actors on the left
Put reactive actors on the right

Readability
Keep diagrams simple
Don’t show obvious return values
Don’t show object destruction

Usage
Focus on critical interactions only

Consistency
Class names must be consistent with class diagram
Message routes must be consistent with (navigable) class associations

