
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 13:
Requirements Analysis

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Mars Polar Lander
Launched

3 Jan 1999

Mission
Land near South Pole
Dig for water ice with a
robotic arm

Fate:
Arrived 3 Dec 1999
No signal received after
initial phase of descent

Cause:
Several candidate causes
Most likely is premature
engine shutdown due to
noise on leg sensors

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

What happened?
We don’t know for sure:

spacecraft not designed to send
telemetry during descent

This decision severely criticized by
review boards

Possible causes:
1. Lander failed to separate from

cruise stage (plausible but unlikely)
2. Landing site too steep (plausible)
3. Heatshield failed (plausible)
4. Loss of control due to dynamic effects

(plausible)
5. Loss of control due to center-of-mass

shift (plausible)
6. Premature Shutdown of Descent

Engines (most likely!)
7. Parachute drapes over lander

(plausible)
8. Backshell hits lander (plausible but

unlikely)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Premature Shutdown Scenario
Cause of error

Magnetic sensor on each leg senses touchdown
Legs unfold at 1500m above surface
software accepts transient signals on touchdown sensors during unfolding

Factors
System requirement to ignore the transient signals
But the software requirements did not describe the effect
Engineers present at code inspection didn’t understand the effect
Not caught in testing because:

Unit testing didn’t include the transients
Sensors improperly wired during integration tests (no touchdown detected!)

Result of error
Engines shut down before spacecraft has landed
estimated at 40m above surface, travelling at 13 m/s
estimated impact velocity 22m/s (spacecraft would not survive this)
nominal touchdown velocity 2.4m/s

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

FLIGHT SOFTWARE REQUIREMENTS

3.7.2.2.4.2 Processing

a. The lander flight software shall cyclically check the

state of each of the three touchdown sensors (one per leg)

at 100 Hz during EDL.

b. The lander flight software shall be able to cyclically

check the touchdown event state with or without

touchdown event generation enabled.

c. Upon enabling touchdown event generation, the lander

 flight software shall attempt to detect failed sensors by

marking the sensor as bad when the sensor indicates

“touchdown state” on two consecutive reads.

d. The lander flight software shall generate the landing

 event based on two consecutive reads indicating

touchdown from any one of the“good” touchdown

sensors.

.

SYSTEM REQUIREMENTS

1) The touchdown sensors shall be sampled at 100-Hz rate.

The sampling process shall be initiated prior to lander entry

to keep processor demand constant.

However, the use of the touchdown sensor data shall not

begin until 12 meters above the surface.

2) Each of the 3 touchdown sensors shall be tested

automatically and independently prior to use of the

touchdown sensor data in the onboard logic.

The test shall consist of two (2) sequential sensor readings

showing the expected sensor status.

If a sensor appears failed, it shall not be considered in the

descent engine termination decision.

3) Touchdown determination shall be based on two

sequential reads of a single sensor indicating touchdown.

Figure 7-9. MPL System Requirements Mapping to Flight Software RequirementsAdapted from the “Report of the Loss of the Mars Polar Lander
and Deep Space 2 Missions -- JPL Special Review Board (Casani Report) - March 2000”.

See http://www.nasa.gov/newsinfo/marsreports.html

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Quality = Fitness for purpose
Software technology is everywhere

Affects nearly all aspects of our lives
But our experience of software technology is often frustrating/disappointing

Software is designed for a purpose
If it doesn’t work well then either:

…the designer didn’t have an adequate understanding of the purpose
…or we are using the software for a purpose different from the intended one

Requirements analysis is about identifying this purpose
Inadequate understanding of the purpose leads to poor quality software

The purpose is found in human activities
E.g. Purpose of a banking system comes from the business activities of banks

and the needs of their customers
The purpose is often complex:

Many different kinds of people and activities
Conflicting interests among them

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Designing for people
What is the real goal of software design?

Creating new programs, components, algorithms, user interfaces,…?
Making human activities more effective, efficient, safe, enjoyable,…?

How rational is the design process?
Hard systems view:

Software problems can be decomposed systematically
The requirements can be represented formally in a specification
This specification can be validated to ensure it is correct
A correct program is one that satisfies such a specification

Soft systems view:
Software development is is embedded in a complex organisational context
There are multiple stakeholders with different values and goals
Software design is part of an ongoing learning process by the organisation
Requirements can never be adequately captured in a specification
Participation of users and others throughout development is essential

Reconciliation:
Hard systems view okay if there is local consensus on the nature of the problem

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Separate the problem from the solution

Problem
Statement

Implementation
Statement

System

C
or

re
sp

on
de

nc
e

C
or

re
ct

ne
ss

Va
lid

at
io

n

Ve
rif

ic
at

io
n

A separate problem
description is useful:

Most obvious problem might not
the right one to solve
Problem statement can be
discussed with stakeholders
Problem statement can be used
to evaluate design choices
Problem statement is a source
of good test cases

Still need to check:
Solution correctly solves the
stated problem
Problem statement corresponds
to the needs of the stakeholders

Problem
Situation

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Problem
Situation

But design changes the world…

abstract
model of world

implementation
statement

problem
statement

change

System

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Intertwining of problems and solutions

Implementation Dependence DependentIndependent

General

Detailed

Level
of

Detail

Implementation
Statement

Problem
Statement

Path of exploration

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

A problem to describe…
E.g. “land a spacecraft on Mars”

bus managementgravity

mission goals

cost
savings

safety margins

altitude

landing sites

project
team

elapsed time

touch sensors

thrusters

error recovery

memory management

command sequences

timers

things the machine
cannot observe

things private
to the machine

shared
things

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

D - domain properties

R - requirements

C - computers

P - programs

Thinking about Software Requirements

Domain Properties (assumptions):
things in the application domain that are true whether or not we ever build the proposed
system

(System) Requirements:
things in the application domain that we wish to be made true by delivering the proposed
system

Many of which will involve phenomena the machine has no access to

A (Software) Specification:
 is a description of the behaviours that the program must have in order to meet the
requirements

Can only be written in terms of shared phenomena!

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Fitness for purpose?
Two correctness (verification) criteria:

The Program running on a particular Computer satisfies the Specification
The Specification, in the context of the given domain properties, satisfies the

requirements

Two completeness (validation) criteria:
We discovered all the important requirements
We discovered all the relevant domain properties

Example:
Requirement R:

“Reverse thrust shall only be enabled when the aircraft is moving on the runway”
Domain Properties D:

Wheel pulses on if and only if wheels turning
Wheels turning if and only if moving on runway

Specification S:
Reverse thrust enabled if and only if wheel pulses on

Verification: S, D R

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Another Example
Requirement R:

“The database shall only be accessible by authorized personnel”

Domain Properties D:
Authorized personnel have passwords
Passwords are never shared with non-authorized personnel

Specification S:
Access to the database shall only be granted after the user types an authorized

password

S + D entail R
But what if the domain assumptions are wrong?

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

But we can also move the boundaries…
E.g. Elevator control system:

people waiting

people in the elevator

people wanting to go to
a particular floor

Elevator motors

Elevator call buttons
Floor request buttons

Current floor indicators

Scheduling algorithm

Safety rules

Motor on/off

Door open/close

Control program
button lights

We can shift things around:
E.g. Add some sensors to detect when people are waiting
This changes the nature of the problem to be solved

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Observations
Analysis is not necessarily a sequential process:

Don’t have to write the problem statement before the solution statement
(Re-)writing a problem statement can be useful at any stage of development

RE activities continue throughout the development process

The problem statement will be imperfect
RE models are approximations of the world

will contain inaccuracies and inconsistencies
will omit some information.
assess the risk that these will cause serious problems!

Perfecting a specification may not be cost-effective
Requirements analysis has a cost
For different projects, the cost-benefit balance will be different
Depends on the consequences of getting it wrong!

Problem statement should never be treated as fixed
Change is inevitable, and therefore must be planned for
There should be a way of incorporating changes periodically

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

What do Requirements Analysts do?
Starting point

Some notion that there is a “problem” that needs solving
e.g. dissatisfaction with the current system
e.g. a new business opportunity
e.g. a potential saving of cost, time, resource usage, etc.

A Requirements Analyst is an agent of change

The requirements analyst must:
identify the “problem” / “opportunity”

Which problem needs to be solved? (identify problem Boundaries)
Where is the problem? (understand the Context/Problem Domain)
Whose problem is it? (identify Stakeholders)
Why does it need solving? (identify the stakeholders’ Goals)
When does it need solving? (identify Development Constraints)
What might prevent us solving it? (identify Feasibility and Risk)
How might a software system help? (collect some Scenarios / Use Cases)

