
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 19:
Automated Testing

Strategy for automated tests
JUnit and family
Testing GUI-based software
Test coverage for Object-Oriented Systems

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Automated Testing Strategy

Setup

Exercise

Verify

Teardown

SUT
(System

under
Test)

DOC
(depended-On

Component)

Initialize

Exercise
(with return value)

Get State

Get Something
(with return value)

Do something
(no return value)

Direct control points

Indirect control point

Direct observation points

Indirect observation points
TestCase Fixture

Test Double

Source: Adapted from Meszaros 2007, p66

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Test Order?

Inside
Out

Outside
In

Source: Adapted from Meszaros 2007, p35

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

How JUnit works
Source: Adapted from Meszaros 2007, p77

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Principles of Automated Testing
Write the Test Cases First
Design for Testability
Use the Front Door First

test via public interface
avoid creating back door manipulation

Communicate Intent
Tests as Documentation!
Make it clear what each test does

Don’t Modify the SUT
avoid test doubles
avoid test-specific subclasses
(unless absolutely necessary)

Keep tests Independent
Use fresh fixtures
Avoid shared fixtures

Isolate the SUT
Minimize Test Overlap
Verify One Condition Per Test
Test Concerns Separately
Minimize Untestable code

e.g. GUI components
e.g. multi-threaded code
etc

Keep test logic out of production
code

No test hooks!

Source: Adapted from Meszaros 2007, p39-48

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Testing interactive software
1) Start UMLet

2) Click on
 File -> Open

3) select test2.uxf

4) click Open

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Automating the testing
Challenges for automated testing:

Synchronization - How do we know a window popped open that we can click in?
Abstraction - How do we know it’s the right window?
Portability - What happens on a display with different resolution / size, etc

Units

Functionality

Presentation

Automated
tests

Manual
tests

Source: Adapted from Zeller 2006, p57

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Presentation Layer
Script the mouse and keyboard events

script can be recorded (e.g. “send_xevents @400,100”)
script is write-only and fragile

Script at the application function level
E.g. Applescript: tell application ”UMLet" to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application…

Source: Adapted from Zeller 2006, chapter 3

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Circular Dependencies

Core

+print_to_file()

UserPresentation

+confirm_loss()

void print_to_file(string filename)
{
 if (path_exists(filename)) {
 // FILENAME exists; ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }
 // Proceed printing to FILENAME...
}

Source: Adapted from Zeller 2006, chapter 3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Revised Dependency

Core

+print_to_file()

Presentation

+confirm_loss()

UserPresentation

+confirm_loss()

AutoPresentation

+confirm_loss()

ask user return true;

Source: Adapted from Zeller 2006, chapter 3

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Testing Object Oriented Code
Encapsulation

If the object hides it’s internal state, how do we test it?
E.g. add methods only to be used in testing, which expose internal state
But: how do we know these extra methods are correct?

Inheritance
When a subclass extends a well-tested class, what extra testing is needed?
e.g. Test just the overridden methods?
But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods

Polymorphism
When class A calls class B, it might actually be interacting with any of B’s

subclasses…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Consider this program…

Base

+foo()
+bar()
-helper()

Derived

-helper()

class Base {
 public void foo() {
 … helper(); …
 }
 public void bar() {
 … helper(); …
 }
 private helper() {…}
}

class Derived extends Base {
 private helper() {…}
}

Source: Adapted from IPL 1999

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Test Cases
public void testFoo() {
 Base b = new Base();
 b.foo();
}
public void testBar() {
 Derived d = new Derived();
 d.bar();
}

Base

+foo() -- Exercised in testFoo
+bar() -- Untested!
-helper() -- Exercised in testFoo

Derived

{+foo()} -- Untested!
{+bar()} -- Exercised in testBar
-helper() -- Exercised in testBar inherited methods

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Base

+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar
-helper() -- Exercised in tBF and tBB

Derived

{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar
-helper() -- Exercised in tDF & tDB

public void testBaseFoo() {
 Base b = new Base();
 b.foo();
}
public void testBaseBar() {
 Base b = new Base();
 b.bar();
}
public void testDerivedFoo() {
 Base d = new Derived();
 d.foo();
}
public void testDerivedBar() {
 Derived d = new Derived();
 d.bar();
}

Source: Adapted from IPL 1999

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Inheritance Coverage
Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Subclassing the Test Cases

Base

Base methods

DerivedA

inherited methods
new methods

DerivedB

inherited methods
new methods

testBase

Test Base methods

testDerivedA

re-test inherited methods
test new methods

testDerivedB

re-test inherited methods
test new methods

Source: Adapted from IPL 1999

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

State-based Context Coverage
Test Every Transition!

Source: Adapted from IPL 1999

