
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 20:
Black Box & Exploratory Testing

Use Cases as Test Cases
Quicktests
Exploratory Testing
When to stop testing

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Generating Tests from Use Cases
1 Test the Basic Flow
2 Test the Alternate Flows

Buy a Product

Precondition: Customer has successfully logged in

Main Success Scenario:
Customer browses catalog and selects items to buy
Customer goes to check out
Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information
Customer fills in credit card information
System authorizes purchase
System confirms sale immediately
System sends confirming email to customer

Postcondition: Payment was received in full, customer has received confirmation

Extensions:
3a: Customer is Regular Customer
 .1 System displays current shipping, pricing and billing information
 .2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card
 .1 Customer may reenter credit card information or may cancel

Buy a
Product

Customer

Start Use Case

End Use Case

End Use Case End Use Case

Basic Flow

Alternate Flow 1

Alternate
Flow 2

Alternate
Flow 3

Alternate
Flow 4

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Generating Tests from Use Cases

Buy a Product

Precondition: Customer has successfully logged in

Main Success Scenario:
Customer browses catalog and selects items to buy
Customer goes to check out
Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information
Customer fills in credit card information
System authorizes purchase
System confirms sale immediately
System sends confirming email to customer

Postcondition: Payment was received in full, customer has received confirmation

Extensions:
3a: Customer is Regular Customer
 .1 System displays current shipping, pricing and billing information
 .2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card
 .1 Customer may reenter credit card information or may cancel

Buy a
Product

Customer

3 Test the Postconditions
Are they met on all paths

through the use case?
Are all postconditions met?

4 Break the Preconditions
What happens if this is not met?
In what ways might it not be

met?

5 Identify options for each
variable

select combinations of options
for each test case

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Classes of input variables
values that trigger alternative
flows

e.g. invalid credit card
e.g. regular customer

trigger different error messages
e.g. text too long for field
e.g. email address with no “@”

inputs that cause changes in the
appearance of the UI

e.g. a prompt for additional information

inputs that causes different
options in dropdown menus

e.g. US/Canada triggers menu of
states/provinces

cases in a business rule
e.g. No next day delivery after 6pm

border conditions
if password must be min 6 characters,
test password of 5,6,7 characters

Check the default values
e.g. when cardholder’s name is filled
automatically

Override the default values
e.g. when the user enters different name

Enter data in different formats
e.g. phone numbers:
(416) 555 1234
416-555-1234
416 555 1234

Test country-specific
assumptions

e.g. date order: 5/25/08 vs. 25/5/08

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Limits of Use Cases as Test Cases
Use Case Tests good for:

User acceptance testing
“Business as usual” functional testing
Manual black-box tests
Recording automated scripts for common
scenarios

Limitations of Use Cases
Likely to be incomplete
Use cases don’t describe enough detail
of use
Gaps and inconsistencies between use
cases
Use cases might be out of date
Use cases might be ambiguous

Defects you won’t discover:
System errors (e.g. memory leaks)
Things that corrupt persistent data
Performance problems
Software compatibility problems
Hardware compatibility problems

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Quick Tests
A quick, cheap test

e.g. Whittaker “How to Break Software”

Examples:
The Shoe Test (key repeats in any input field)
Variable boundary testing
Variability Tour: find anything that varies, and vary it as far as possible in every

dimension

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Whittaker’s QuickTests
Explore the input domain

1. Inputs that force all the error
messages to appear

2. Inputs that force the software to
establish default values

3. Explore allowable character sets and
data types

4. Overflow the input buffers
5. Find inputs that may interact, and test

combinations of their values
6. Repeat the same input numerous

times

Explore the outputs
7. Force different outputs to be

generated for each input
8. Force invalid outputs to be generated
9. Force properties of an output to

change
10.Force the screen to refresh

Explore stored data constraints
11.Force a data structure to store too

many or too few values
12.Find ways to violate internal data

constraints

Explore feature interactions
13.Experiment with invalid

operator/operand combinations
14.Make a function call itself recursively
15.Force computation results to be too

big or too small
16.Find features that share data

Vary file system conditions
17.File system full to capacity
18.Disk is busy or unavailable
19.Disk is damaged
20. invalid file name
21.vary file permissions
22.vary or corrupt file contents

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Interference Testing
Generate Interrupts

From a device related to the task
From a device unrelated to the task
From a software event

Change the context
Swap out the CD
Change contents of a file while program
is reading it
Change the selected printer
Change the video resolution

Cancel a task
Cancel at different points of completion
Cancel a related task

Pause the task
Pause for short or long time

Swap out the task
e.g. change focus to another application
e.g. load processor with other tasks
e.g. put the machine to sleep
e.g. swap out a related task

Compete for resources
e.g. get the software to use a resource
that is already being used
e.g. run the software while another task is
doing intensive disk access

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Exploratory Testing
Start with idea of quality:

Quality is value to some person

So a defect is:
something that reduces the value of the
software to a favoured stakeholder
or increases its value to a disfavoured
stakeholder

Testing is always done on behalf
of stakeholders

Which stakeholder this time?
e.g. programmer, project manager,
customer, marketing manager, attorney…
What risks are they trying to mitigate?

You cannot follow a script
It’s like a crime scene investigation
Follow the clues…
Learn as you go…

Kaner’s definition:
Exploratory testing is

…a style of software testing
…that emphasizes personal
freedom and responsibility

…of the tester
…to continually optimize the value

of their work
…by treating test-related learning,

test design, and test execution
…as mutually supportive activities

…that run in parallel throughout the
project

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Test Ideas
Function Testing: Test what it can do.

 Domain Testing: Divide and conquer the data.

 Stress Testing: Overwhelm the product.

 Flow Testing: Do one thing after another.

 Scenario Testing: Test to a compelling story.

 Claims Testing: Verify every claim.

 User Testing: Involve the users.

 Risk Testing: Imagine a problem, then find it.

 Automatic Testing: Write a program to generate and run a zillion
tests.

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

When to stop testing?
Motorola’s Zero-failure testing model

Predicts how much more testing is needed to establish a given reliability goal
basic model:

failures = ae-b(t)

Reliability estimation process
Inputs needed:

fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far
th = total testing hours up to the last failure

Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

Result gives the number of further failure free hours of testing needed to
establish the desired failure density

if a failure is detected in this time, you stop the clock and recalculate
Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Fault Seeding
Seed N faults into the software

Start testing, and see how many seeded faults you find
Hypothesis:

Use this to estimate test efficiency
Estimate # remaining faults

Alternatively
Get two teams to test independently
Estimate each team’s test efficiency by:

Detected seeded faults

Total seeded faults

Detected nonseeded faults

Total nonseeded faults
=

Efficiency(team1) =
faults found by team 1

Total number of faults

unknown

Faults found by both teams

Total # faults found by team 2
=

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Defect Discovery

Time (e.g. days)

de

fe
ct

s
fo

un
d

Typical testing results The bad news

Number of defects found to date

Pr
ob

ab
ilit

y
of

 m
or

e
de

fe
ct

s

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

