
1

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 1

Lecture 24:
Course Summary

What we’ve covered in this course
Some underlying principles
Course Evaluation

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 2

Course Outline
Modeling

Sketching vs. Blueprints (vs. programming)
Structure vs. Behaviour vs. Function
Abstraction, Decomposition, Projection
UML

Maintenance and Re-engineering
Software Evolution
Program Comprehension
Reverse Engineering for Design Recovery

Software Architecture
Conway’s Law
Coupling and Cohesion
Architectural Patterns

Software Processes
Agile vs. Disciplined
Iterative development
RUP, ICONIX, XP, SCRUM,…
QA and process improvement

Project Management
Resources, Time, Product, Risk
Estimation & Prioritization
Risk Assessment & Control
Monitoring and Controling a project
Organising a team

Requirements Analysis
Requirements vs. Specifications
Stakeholders, Goals, Obstacles
Use Cases
Robustness Analysis

Verification and Validation
Testing
Static Analysis
Inspection
Prototyping
Formal model analysis

Software Quality…



2

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 3

Modeling Notations

Goal Models
Stakeholder’s goals
and priorities
Means-ends analysis
and rationale
dependencies
between stakeholders

UML Sequence
Diagrams

individual scenario
interactions between
users and system
Sequence of
messages

(UML) Statecharts
responses to events
dynamic behavior
event ordering,
reachability,
deadlock, etc

UML Package Diagrams
Overall architecture
Dependencies
between components

Use Cases
user’s view
Lists functions
visual overview of
the main
requirements

UML Class Diagrams
information structure
relationships
between data items
modular structure for
the system

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 4

Why models are important
Abstraction

Ignore detail to see the big picture
Treat objects as the same by ignoring certain differences
(beware: every abstraction involves choice over what is important)

Decomposition
Partition a problem into independent pieces, to study separately
(beware: the parts are rarely independent really)

Projection
Separate different concerns (views) and describe them separately
Different from decomposition as it does not partition the problem space
(beware: different views will be inconsistent most of the time)

Modularization
Choose structures that are stable over time, to localize change
(beware: any structure will make some changes easier and others harder)



3

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 5

Scaling Up
Complexity grows rapidly

“For every 25% increase in problem complexity there is a 100% increase in
solution complexity” (Robert Glass)

Why?
Software development is largely an intellectual task (80% intellectual, 20% clerical)

To scale up, you need more brains
Software development becomes a social activity
Coordinating more people is hard

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 6

Glass’s Facts (slightly refactored)

People
Most important factor is quality of your
developers
Best programmers are 28 times more
effective than the worst

Tools
There is no silver bullet
Each tool/technique offers only small
improvements
Any new tool/technique initially causes a
reduction in productivity
Most tools become shelfware

Estimation
Poor estimation is endemic
Estimation is done by the wrong people, at
the wrong time, and never adjusted…

Re-use
Re-use in the small is solved;
Re-use in the large is intractable

Requirements
Requirements errors are the most
expensive to fix during development
Missing requirements are the hardest errors

Design
Design is a complex, iterative process
There is seldom one best design

Testing
55-60% branch coverage is typical
100% coverage is unachievable
100% coverage is insufficient

Defects
Error removal is the most time-consuming
part of software development
Errors tend to cluster (80:20)
Most programmers make the same mistakes

Maintenance
Maintenance is 40-80% of software costs
Understanding the existing product is the
hardest part

Adapted from Robert Glass “Facts and Fallacies of Software Engineering”



4

University of Toronto Department of Computer Science

© 2008 Stev e Easterbrook. This presentation is av ailable f ree f or non-commercial use with attribution under a creativ e commons license. 7

How do we know what we know?
Survey research:

To find out what’s true across (some part
of) the s/w industry
To establish what is normal, common or
uncommon.

Case studies:
To understand what developers actually
do
To gain deeper insights into what
happens in a small number of selected
cases.

Experiments
 (& quasi-experiments):

To investigate whether a particular
technique has an effect on quality,
development time, etc
To test for a causal relationship.

Ethnographies:
To understand the culture and
perspective of developers
To probes how developers themselves
make sense of their context

Action research:
To solve a pressing problem, and
understand whether the solution was
effective
To focus on effecting change, and
learning from the experience


