
1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lectures 2 & 3:
Introduction to Modeling & UML

 Why Build Models?
 What types of Models to build
 Intro to UML
 Class Diagrams
 Relationship between UML and program code
 Uses of UML

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Getting started
 Youʼve just joined an ongoing project

 Where do you start?
 (oh, BTW, the project doesnʼt really have any documentation)

 Reverse Engineering:
 Recover design information from the code
 Create higher level views to improve understanding

 E.g. Structure of the code
 Code Dependencies
 Components and couplings

 E.g. Behaviour of the code
 Execution traces
 State machine models of complex objects

 E.g. Function of the code
 What functions does it provide to the user?

2

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Sometimes you donʼt need a map

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Why build models?
 Modelling can guide your exploration:

 It can help you figure out what questions to ask
 It can help to reveal key design decisions
 It can help you to uncover problems

 Modelling can help us check our understanding
 Reason about the model to understand its consequences

 Does it have the properties we expect?
 Animate the model to help us visualize/validate software behaviour

 Modelling can help us communicate
 Provides useful abstractions that focus on the point you want to make…
 …without overwhelming people with detail

 Throw-away modelling?
 The exercise of modelling is more important than the model itself
 Time spent perfecting the models might be time wasted…

3

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Maps as Abstractions

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

4

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Dealing with problem complexity
 Abstraction

 Ignore detail to see the big picture
 Treat objects as the same by ignoring certain differences
 (beware: every abstraction involves choice over what is important)

 Decomposition
 Partition a problem into independent pieces, to study separately
 (beware: the parts are rarely independent really)

 Projection
 Separate different concerns (views) and describe them separately
 Different from decomposition as it does not partition the problem space
 (beware: different views will be inconsistent most of the time)

 Modularization
 Choose structures that are stable over time, to localize change
 (beware: any structure will make some changes easier and others harder)

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

the Unified Modelling Language (UML)
 Third generation OO method

 Booch, Rumbaugh & Jacobson are principal authors
 Still evolving (currently version 2.0)
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modelling method associated with it!
 Was intended as a design notation

 Has become an industry standard
 But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

 Has a standardized meta-model
 Use case diagrams
 Class diagrams
 Message sequence charts
 Activity diagrams
 State Diagrams
 Module Diagrams
 Platform diagrams
 …

5

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Modeling Notations

Activity diagrams
business processes;
concurrency and
synchronization;
dependencies
between tasks;

UML Sequence Diagrams
individual scenario
interactions between
users and system
Sequence of
messages

(UML) Statecharts
responses to events
dynamic behavior
event ordering,
reachability,
deadlock, etc

UML Package Diagrams
Overall architecture
Dependencies
between components

Use Cases
userʼs view
Lists functions
visual overview of the
main requirements

UML Class Diagrams
information structure
relationships between
data items
modular structure for
the system

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Intro: Object Classes in UML

:patient

Name
Date of Birth
physician
history

:in-patient
Room
Bed
Treatments
food prefs

:out-patient
Last visit
next visit
prescriptions

:patient
Name
Date of Birth
physician
history

:heart
Natural/artif.
Orig/implant
normal bpm

:eyes
Natural/artif.
Vision
colour

:kidney
Natural/artif.
Orig/implant
number

Source: Adapted from Davis, 1990, p67-68

1

0..1

0..21..2

0..1 0..1

Generalization
(an abstraction hierarchy)

Aggregation
(a partitioning hierarchy)

6

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2
0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

What are classes?
 A class describes a group of objects with

 similar properties (attributes),
 common behaviour (operations),
 common relationships to other objects,
 and common meaning (“semantics”).

 Examples
 employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
 (optional)

Operations
 (optional)

7

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

The full notation…

 Student

+ name: string [1] = “Anon” {readOnly}
+ registeredIn: Course [*]

+ register (c: Course)
+ isRegistered (c: Course) : Boolean

Name of the class

Visibility:
+, -, #, …

Attribute
name

Operation
name Parameters

Return value

Attribute
type

Multiplicity

Default value

Other Properties

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

Objects vs. Classes
 The instances of a class are called objects.

 Objects are represented as:

 Two different objects may have identical attribute values (like two people with
identical name and address)

 Objects have associations with other objects
 E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
 But we will capture these relationships at the class level (why?)
 Note: Make sure attributes are associated with the right class

 E.g. you donʼt want both managerName and manager# as attributes of Project!
(…Why??)

8

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Generalization

 Notes:
 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities
 e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Aggregation and Composition
 Aggregation

 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.
 the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

9

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Aggregation / Composition (Refresher)

3..*

centre{ordered}

1

*

composition

aggregation

MemberClub

Polygon CirclePoint

*

Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both

What does
this mean??

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Associations
 Objects do not exist in isolation from one another

 A relationship represents a connection among things.
 In UML, there are different types of relationships:

 Association
 Aggregation and Composition
 Generalization
 Dependency
 Realization

 Class diagrams show classes and their relationships

10

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Association Multiplicity
 Ask questions about the associations:

 Can a campaign exist without a member of staff to manage it?
 If yes, then the association is optional at the Staff end - zero or more (0..*)
 If no, then it is not optional - one or more (1..*)
 If it must be managed by one and only one member of staff - exactly one (1)

 What about the other end of the association?
 Does every member of staff have to manage exactly one campaign?
 No. So the correct multiplicity is zero or more.

 Some examples of specifying multiplicity:
 Optional (0 or 1) 0..1
 Exactly one 1 = 1..1
 Zero or more 0..* = *
 One or more 1..*
 A range of values 2..6

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

11

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

More Examples

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

Navigability / Visibility

 Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineItems: OrderLine [*] {ordered}

OrderDate Boolean

OrderLine

+isPrepaid+dateReceived

+lineItems {ordered}

1

*

0..1 *

1

12

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Bidirectional Associations

Person Car*0..1

 Person

+ carsOwned: Car [*]

 Car

+ Owner: Person [0..1]

Hard to implement correctly!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 24

View ViewController

Model

Layout

Dependencies

 Example Dependency types:
 <<call>>
 <<use>>
 <<create>>
 <<derive>>
 <<instantiate>>
 <<permit>>
 <<realize>>
 <<refine>>
 <<substitute>>
 <<parameter>>

13

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 25

Interfaces

 Order

LineItems [*]
 ArrayList

 Order

LineItems [*]

 <<interface>>
 List

get

 <<interface>>
 Collection

equals
add

 ArrayList

get
add

<<requires>> <<implements>>

List

Collection

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 26

Annotations
 Comments

 -- can be used to add comments within a class description

 Notes

 Constraint Rules
 Any further constraints {in curly braces}
 e.g. {time limit: length must not be more than three months}

{length = start - end}
 Date Range

Start: Date
End: Date
/length: integer

14

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 27

What UML class diagrams can show
 Division of Responsibility

 Operations that objects are responsible for providing

 Subclassing
 Inheritance, generalization

 Navigability / Visibility
 When objects need to know about other objects to call their operations

 Aggregation / Composition
 When objects are part of other objects

 Dependencies
 When changing the design of a class will affect other classes

 Interfaces
 Used to reduce coupling between objects

