
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 2:
What are Requirements?

 Two basic principles of requirements engineering:
 Separate the problem from the solution
 Problems and solutions intertwine with one another

 Describing problems:
 Application Domains vs. Machine Domains
 Verification vs. Validation

 Systems Engineering
 Systems vs. software

 Patterns and Types of Problem
 Requirements patterns
 Problem Frames

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Separate the problem from the solution

Problem
Statement

Implementation
Statement

System

C
o

rr
es

p
o

n
d

en
ce

C
o

rr
ec

tn
es

s

V
al

id
at

io
n

V
er

if
ic

at
io

n

 A separate problem
description is useful:
 Most obvious problem might

not the right one to solve
 Problem statement can be

discussed with stakeholders
 Problem statement can be

used to evaluate design
choices

 Problem statement is a
source of good test cases

 Still need to check:
 Solution correctly solves the

stated problem
 Problem statement

corresponds to the needs of
the stakeholders

Problem
Situation

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Problem
Situation

But design changes the world…

abstract
model of world

implementation
statement

problem
statement

change

System

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Intertwining of problems and solutions

Implementation Dependence DependentIndependent

General

Detailed

Level
of

Detail

Implementation
Statement

Problem
Statement

Path of exploration



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Some observations about RE
 RE is not necessarily a sequential process:

 Don’t have to write the problem statement before the solution statement
 (Re-)writing a problem statement can be useful at any stage of development

 RE activities continue throughout the development process

 The problem statement will be imperfect
 RE models are approximations of the world

 will contain inaccuracies and inconsistencies
 will omit some information.
 analysis should reduce the risk that these will cause serious problems…

 Perfecting a specification may not be cost-effective
 Requirements analysis has a cost
 For different projects, the cost-benefit balance will be different

 Problem statement should never be treated as fixed
 Change is inevitable, and therefore must be planned for
 There should be a way of incorporating changes periodically

University of Toronto Department of Computer Science

© Easterbrook 2004 6

What vs. How
 Traditionally, should specify

‘what’ without specifying ‘how’
 But this is not always easy to

distinguish:
 What does a car do?
 What does a web browser do?
 What does an operating system do?

 The ‘how’ at one level of abstraction
forms the ‘what’ for the next level

 Also misses:
 ‘Why’ questions:

 Why is this system needed?
 Why should it behave that way?

 ‘Who’ questions:
 Whose problem is it?

 Etc.
…

Require-
ments

Design

System

Design

Require-
ments

Sub-
system

Require-
ments

Unit

Design

What

How

What

How

What

How

University of Toronto Department of Computer Science

© Easterbrook 2004 7

A problem to describe…
 E.g. “prevent unauthorized access to CSG machines”

encryption algorithmsstudents

intruders

password
allocation
process

stickies with
passwords on

T-cards

sysadmins

signed 
forms

passwords

usernames

typing at 
keyboard

password files

memory management

cache contents

secure sockets

things the machine
cannot observe

things private 
to the machine

shared
things

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

What are requirements?

 Domain Properties:
 things in the application domain that are true whether or not we ever build the

proposed system

 Requirements:
 things in the application domain that we wish to be made true by delivering the

proposed system
Many of which will involve phenomena the machine has no access to

 A Specification:
  is a description of the behaviours that the program must have in order to meet the

requirements
Can only be written in terms of shared phenomena!



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Fitness for purpose?
 Two correctness (verification) criteria:

 The Program running on a particular Computer satisfies the Specification
 The Specification, in the context of the given domain properties, satisfies

the requirements

 Two completeness (validation) criteria:
We discovered all the important requirements
We discovered all the relevant domain properties

 Example:
 Requirement R:

 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”
 Domain Properties D:

 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification: S, D     R

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Another Example
 Requirement R:

 “The database shall only be accessible by authorized personnel”

 Domain Properties D:
 Authorized personnel have passwords
 Passwords are never shared with non-authorized personnel

 Specification S:
 Access to the database shall only be granted after the user types an

authorized password

 S + D entail R
 But what if the domain assumptions are wrong?

University of Toronto Department of Computer Science

© Easterbrook 2004 11

But we can also move the boundaries…
 E.g. Elevator control system:

people waiting

people in the elevator

people wanting to go to
a particular floor 

Elevator motors

Elevator call buttons

Floor request buttons

Current floor indicators

Scheduling algorithm

Safety rules

Motor on/off

Door open/close

Control program
button lights

We can shift things around:
 E.g. Add some sensors to detect when people are waiting
 This changes the nature of the problem to be solved

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Systems vs. Software Engineering

input
devices

output
devices

software
Monitored

 Variables

environ-
ment

System

input

data
items

data
items

output Controlled

 Variables

IN
(Properties of the input device)

SOFT
(properties of the software)

OUT
(properties of the output device)

REQ (the requirements - relationships between monitored and controlled
variables that the system is required to establish or maintain)

NAT (natural relationships between monitored and controlled variables that
are part of the domain)

environ-
ment



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Example Problem Frames
 Required behaviour

 Problem: build a machine to control
part of the world in accordance with a
fixed set of control rules

 Likely Solution: an automated control
system

 Commanded Behaviour
 Problem: build a machine that allows

part of the world to be controlled by
an operator by issuing commands

 Likely Solution: a “human-in-the-loop”
control system.

 Information Display
 Problem: provide information about the

current state of part of the world, in
response to information requests

 Likely Solution: an information system.

Controller
Desired

Behavior
Controlled

Domain

Controller
Desired

Behavior
Controlled

Domain

User

Information
Requests

Real World

Information
system

Information
function

Information
Outputs

University of Toronto Department of Computer Science

© Easterbrook 2004 14

More problem frames
Simple workpieces frame

 Problem: keep track of the edits
performed on some workpiece, e.g a
text file or a graphical object

 Likely Solution: application software
(e.g. a word processor)

Transformation frame
 Problem: take input data in a certain

format, and provide a transformation
according to a certain set of rules

 Example Solutions: data processing
applications; compilers, etc.

 Connection frame
 Problem: maintain a correspondence

between domains that are otherwise
not connected

 Example Solutions: data entry system,
sensor network, etc.

machine
Operation
properties

workpiece

Operation
Requests

machine
Mapping

Rules
Output

Data

Input
Data

SystemReal World

Connection

Achievable
correspondence

SCCR

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Summary
 Requirements Engineering is about describing problems

 It is useful to separate the problem from the solution
 Even thought this cannot be achieved entirely

 Problems evolve continuously:
 Delivering a solution changes the problem
 Describing the problem changes the problem

 Key distinctions:
 Application Domains vs. Machine Domains
 Verification vs. Validation
 Systems Engineering vs. Software Engineering

 Basic Problem Frames
 Give us a starting point for understanding the problem
 Tell us what subdomains we need to describe


