
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 19:
Verification and Validation

 Some Refreshers:
 Summary of Modelling Techniques seen so far
 Recap on definitions for V&V

 Validation Techniques
 Inspection (see lecture 6)
Model Checking (see lecture 16)
 Prototyping

 Verification Techniques
 Consistency Checking
Making Specifications Traceable (see lecture 21)

 Independent V&V

University of Toronto Department of Computer Science

© Easterbrook 2004 2

The story so far
We’ve looked at the following UML diagrams:

 Activity diagrams
 capture business processes involving concurrency and synchronization
 good for analyzing dependencies between tasks

 Class Diagrams
 capture the structure of the information used by the system
 good for analysing the relationships between data items used by the system
 good for helping you identify a modular structure for the system

 Statecharts
 capture all possible responses of an object to all uses cases in which it is involved
 good for modeling the dynamic behavior of a class of objects
 good for analyzing event ordering, reachability, deadlock, etc.

 Use Cases
 capture the view of the system from the view of its users
 good starting point for specification of functionality
 good visual overview of the main functional requirements

 Sequence Diagrams (collaboration diagrams are similar)
 capture an individual scenario (one path through a use case)
 good for modelling dialog structure for a user interface or a business process
 good for identifying which objects (classes) participate in each use case
 helps you check that you identified all the necessary classes and operations

University of Toronto Department of Computer Science

© Easterbrook 2004 3

The story so far (part 2)
We’ve looked at the following non-UML diagrams

 Goal Models
 Capture strategic goals of stakeholders
 Good for exploring ‘how’ and ‘why’ questions with stakeholders
 Good for analysing trade-offs, especially over design choices

 Fault Tree Models (as an example risk analysis technique)
 Capture potential failures of a system and their root causes
 Good for analysing risk, especially in safety-critical applications

 Strategic Dependency Models (i*)
 Capture relationships between actors in an organisational setting
 Helps to relate goal models to organisational setting
 Good for understanding how the organisation will be changed

 Entity-Relationship Models
 Capture the relational structure of information to be stored
 Good for understanding constraints and assumptions about the subject domain
 Good basis for database design

Mode Class Tables, Event Tables and Condition Tables (SCR)
 Capture the dynamic behaviour of a real-time reactive system
 Good for representing functional mapping of inputs to outputs
 Good for making behavioural models precise, for automated reasoning

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Verification and Validation

Problem
Statement

Implementation
Statement

System

V
al
id
at
io
n

V
er
if
ic
at
io
n

 Validation:
 “Are we building the right

system?”
 Does our problem statement

accurately capture the real
problem?

 Did we account for the needs of
all the stakeholders?

 Verification:
 “Are we building the system

right?”
 Does our design meet the spec?
 Does our implementation meet the

spec?
 Does the delivered system do

what we said it would do?
 Are our requirements models

consistent with one another?

Problem
Situation



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Refresher: V&V Criteria

 Some distinctions:
 Domain Properties: things in the application domain that are true anyway
 Requirements: things in the application domain that we wish to be made true
 Specification: a description of the behaviours the program must have in

order to meet the requirements

 Two verification criteria:
 The Program running on a particular Computer satisfies the Specification
 The Specification, given the Domain properties, satisfies the Requirements

 Two validation criteria:
 Did we discover (and understand) all the important Requirements?
 Did we discover (and understand) all the relevant Domain properties?

Source: Adapted from Jackson, 1995, p170-171

Application Domain Machine Domain

University of Toronto Department of Computer Science

© Easterbrook 2004 6

V&V Example
 Example:

 Requirement R:
 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”

 Domain Properties D:
 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification
 Does the flight software, P, running on the aircraft flight computer, C,

correctly implement S?
 Does S, in the context of assumptions D, satisfy R?

 Validation
 Are our assumptions, D, about the domain correct? Did we miss any?
 Are the requirements, R, what is really needed? Did we miss any?

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Shortcuts in the inquiry cycle
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype
Build a

Prototype

Get users
to try it

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model
Analyze

the model

Check properties
of the model

Check properties
of the model

(what is wrong with
the model?)



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Prototyping
“A software prototype is a partial implementation constructed primarily to

enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

“Prototyping is the process of building a working model of the system”
[Agresti 1986]

 Approaches to prototyping
 Presentation Prototypes

 explain, demonstrate and inform – then throw away
 e.g. used for proof of concept; explaining design features; etc.

 Exploratory Prototypes
 used to determine problems, elicit needs, clarify goals, compare design options
 informal, unstructured and thrown away.

 Breadboards or Experimental Prototypes
 explore technical feasibility; test suitability of a technology
 Typically no user/customer involvement

 Evolutionary (e.g. “operational prototypes”, “pilot systems”):
 development seen as continuous process of adapting the system
 “prototype” is an early deliverable, to be continually improved.

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Throwaway or Evolve?
Throwaway Prototyping

Purpose:
 to learn more about the problem or its

solution…
 discard after desired knowledge is gained.

Use:
 early or late

Approach:
 horizontal - build only one layer (e.g. UI)
 “quick and dirty”

Advantages:
 Learning medium for better convergence
 Early delivery → early testing → less cost
 Successful even if it fails!

Disadvantages:
 Wasted effort if reqts change rapidly
 Often replaces proper documentation of the

requirements
 May set customers’ expectations too high
 Can get developed into final product

 Evolutionary Prototyping
Purpose

 to learn more about the problem or its
solution…

 …and reduce risk by building parts early
Use:

 incremental; evolutionary
Approach:

 vertical - partial impl. of all layers;
 designed to be extended/adapted

Advantages:
 Requirements not frozen
 Return to last increment if error is found
 Flexible(?)

Disadvantages:
 Can end up with complex, unstructured

system which is hard to maintain
 early architectural choice may be poor
 Optimal solutions not guaranteed
 Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Model Analysis
 Verification

 “Is the model well-formed?”
 Are the parts of the model consistent with one another?

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes
 “will the system ever do the following...”

 State exploration
 E.g. use a model checking to find traces that satisfy some property

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Basic Cross-Checks for UML
Use Case Diagrams
Does each use case have a user?

 Does each user have at least one use case?
Is each use case documented?

 Using sequence diagrams or equivalent

Class Diagrams
Does the class diagram capture all the

classes mentioned in other diagrams?
Does every class have methods to get/set

its attributes?

Sequence Diagrams
Is each class in the class diagram?
Can each message be sent?

 Is there an association connecting sender and
receiver classes on the class diagram?

 Is there a method call in the sending class for
each sent message?

 Is there a method call in the receiving class
for each received message?

StateChart Diagrams
Does each statechart diagram capture (the

states of) a single class?
 Is that class in the class diagram?

Does each transition have a trigger event?
 Is it clear which object initiates each event?
 Is each event listed as an operation for that

object’s class in the class diagram?
Does each state represent a distinct

combination of attribute values?
 Is it clear which combination of attribute

values?
 Are all those attributes shown on the class

diagram?
Are there method calls in the class

diagram for each transition?
 …a method call that will update attribute

values for the new state?
 …method calls that will test any conditions on

the transition?
 …method calls that will carry out any actions

on the transition?



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Independent V&V
 V&V performed by a separate contractor

 Independent V&V fulfills the need for an independent technical opinion.
 Cost between 5% and 15% of development costs
 Studies show up to fivefold return on investment:

 Errors found earlier, cheaper to fix, cheaper to re-test
 Clearer specifications
 Developer more likely to use best practices

 Three types of independence:
Managerial Independence:

 separate responsibility from that of developing the software
 can decide when and where to focus the V&V effort

 Financial Independence:
 Costed and funded separately
 No risk of diverting resources when the going gets tough

 Technical Independence:
 Different personnel, to avoid analyst bias
 Use of different tools and techniques

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Some philosophical views of validation
 logical positivist view:

 “there is an objective world that can be modeled by building a consistent body of
knowledge grounded in empirical observation”

 In RE, assumes there is an objective problem that exists in the world
 Build a consistent model; make sufficient empirical observations to check validity
 Use tools that test consistency and completeness of the model
 Use reviews, prototyping, etc to demonstrate the model is “valid”

 Popper’s modification to logical positivism:
 “theories can’t be proven correct, they can only be refuted by finding exceptions”

 In RE, design your requirements models to be refutable
 Look for evidence that the model is wrong
 E.g. collect scenarios and check the model supports them

 post-modernist view:
 “there is no privileged viewpoint; all observation is value-laden; scientific

investigation is culturally embedded”
 E.g. Kuhn: science moves through paradigms
 E.g. Toulmin: scientific theories are judged with respect to a weltanschauung

 In RE, validation is always subjective and contextualised
 Use stakeholder involvement so that they ‘own’ the requirements models
 Use ethnographic techniques to understand the weltanschauungen


