
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 22:
Moving into Design

 Analysis vs. Design
Why the distinction?

 Design Processes
 Logical vs. Physical Design
 System vs. Detailed Design

 Architectures
 System Architecture
 Software Architecture
 Architectural Patterns (next lecture)

 Useful Notation
 UML Packages and Dependencies

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Refresher: Lifecycle models
Waterfall model

reqts

architecture
(high level design)

code
(low level design)

integrate

unit test

maintain

perceived
need V model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

analyse
and

design

test
and

integrate

time

Le
ve

l o
f a

bs
tra

ct
io

n

design code test integ-
rate O&Mreqts

design code test integ-
rate O&Mreqts

design code test integ-
ratereqts

version 1

version 2

version 3

lessons
learnt

lessons
learntEvolutionary

development
(each version

incorporates new
requirements)

Spiral
model

Evaluate
alternatives
and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1prototype2prototype3prototype4

alt
ern

ati
ve

s 4
alt

ern
ati

ve
s 3

Alt
ern

-
ati

ve
s 2

constraints4

constraints3

Constr-

aints2altern

atives

constr

aints

risk analysis4
risk analysis3riskanalysis2

riskanalysis1
concept of
operation so

ftw
are

req
uir

em
en

ts

validated

requirements so
ftw

are
de

sig
n

validated,

verified design

de
ta

ile
d

de
sig

n

co
de

unit
test

system
testacceptance

test

requirements,lifecycle plan
development plan

integration and test plan
implementation plan

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Analysis vs. Design
 Analysis

 Asks “what is the problem?”
 what happens in the current system?
 what is required in the new system?

 Results in a detailed understanding of:
 Requirements
 Domain Properties

 Focuses on the way human activities are conducted

 Design
 Investigates “how to build a solution”

 How will the new system work?
 How can we solve the problem that the analysis identified?

 Results in a solution to the problem
 A working system that satisfies the requirements
 Hardware + Software + Peopleware

 Focuses on building technical solutions

 Separate activities, but not necessarily sequential

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Refresher: different worlds

Application Domain Machine Domain

Analysis is all about
studying this world

Design is all about
building this world

But who builds the bridge?



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Four design philosophies
Decomposition & Synthesis
Drivers:

 Managing complexity
 Reuse

 Example:
 Design a car by designing

separately the chassis, engine,
drivetrain, etc. Use existing
components where possible

Situated Design
Drivers

 Errors in existing designs
 Evolutionary Change

 Example:
 Design a car by observing what’s

wrong with existing cars as they
are used, and identifying
improvements

Negotiation
Drivers

 Stakeholder Conflicts
 Dialogue Process

 Example:
 Design a car by getting each

stakeholder to suggest (partial)
designs, and them compare and
discuss them

Search
Drivers

 Transformation
 Heuristic Evaluation

 Example:
 Design a car by transforming an

initial rough design to get closer
and closer to what is desired

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Logical vs. Physical Design

Logical
Design

Physical
Design

Choose
Platform

 Logical Design concerns:
 Anything that is platform-independent:

 Interactions between objects
 Layouts of user interfaces
 Nature of commands/data passed between subsystems

 Logical designs are usually portable to different platforms

 Physical Design concerns:
 Anything that depends on the choice of platform:

 Distribution of objects/services over networked nodes
 Choice of programming language and development environment
 Use of specialized device drivers
 Choice of database and server technology
 Services provided by middleware

University of Toronto Department of Computer Science

© Easterbrook 2004 7

System Design vs. Detailed Design
 System Design

 Choose a System Architecture
 Networking infrastructure
 Major computing platforms
 Roles of each node (e.g. client-server; clients-broker-servers; peer-to-peer,…)

 Choose a Software Architecture
 (see next lecture for details)

 Identify the subsystems
 Identify the components and connectors between them

 Design for modularity to maximize testability and evolveability
 E.g. Aim for low coupling and high cohesion

 Detailed Design
 Decide on the formats for data storage

 E.g. design a data management layer
 Design the control functions for each component

 E.g. design an application logic layer
 Design the user interfaces

 E.g. design a presentation layer

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Global System Architecture
 Choices:

 Allocates users and other external systems to each node
 Identify appropriate network topology and technologies
 Identify appropriate computing platform for each node

 Example:
 See next slide…



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

University of Toronto Department of Computer Science

© Easterbrook 2004 10

System Architecture Questions
 Key questions for choosing platforms:

What hardware resources are needed?
 CPU, memory size, memory bandwidth, I/O, disk space, etc.

What software/OS resources are needed?
 application availability, OS scalability

What networking resources are needed?
 network bandwidth, latency, remote access.

What human resources are needed?
 OS expertise, hardware expertise,
 system administration requirements,
 user training/help desk requirements.

What other needs are there?
 security, reliability, disaster recovery, uptime requirements.

 Key questions constraining the choice:
What funding is available?
What resources are already available?

 Existing hardware, software, networking
 Existing staff and their expertise
 Existing relationships with vendors, resellers, etc.

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Data Management Questions
 How is data entry performed?

 E.g. Keyless Data entry
 bar codes; Optical Character Recognition (OCR)

 E.g. Import from other systems
 Electronic Data Interchange (EDI), Data interchange languages,…

What kinds of data persistence is needed?
 Is the operating system’s basic file management sufficient?
 Is object persistence important?
 Can we isolate persistence mechanisms from the applications?

 Is a Database Management System (DBMS) needed?
 Is data accessed at a fine level of detail

 E.g. do users need a query language?
 Is sophisticated indexing required?
 Is there a need to move complex data across multiple platforms?

 Will a data interchange language suffice?
 E.g. HTML, SGML, XML…

 Is there a need to access the data from multiple platforms?

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Software Architecture
 A software architecture defines:

 the components of the software system
 how the components use each other’s functionality and data
How control is managed between the components

 An example: client-server
 Servers provide some kind of service; clients request and use services
 applications are located with clients

 E.g. running on PCs and workstations;
 data storage is treated as a server

 E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
 Consistency checking is located with the server

 Advantages:
 Breaks the system into manageable components
 Makes the control and data persistence mechanisms clearer

 Variants:
 Thick clients have their own services, thin ones get everything from servers

Note: This is a SOFTWARE architecture
 Clients and server could be on the same machine or different machines…



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Cohesion
How well do the contents of an object (module, package,…) go together?

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

University of Toronto Department of Computer Science

© Easterbrook 2004 15

UML Packages
We need to represent our architectures

 UML elements can be grouped together in packages
 Elements of a package may be:

 other packages (representing subsystems or modules);
 classes;
 models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

 Each element of a UML model is owned by a single package
 Packages need not correspond to elements of the analysis or the design

 they are a convenient way of grouping other elements together

 Criteria for decomposing a system into packages:
Ownership

 who is responsible for working on which diagrams
 Application

 each problem has its own obvious partitions;
 Clusters of classes with strong cohesion

 e.g., course, course description, instructor, student,…
Or use an architectural pattern to help find a suitable decomposition

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Package notation

 2 alternatives for showing package containment:



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Persons

Meetings

Constraints

dependency
(read as

“depends on”)

Package Diagrams
 Dependencies:

 Similar to compilation dependencies
 Captures a high-level view of coupling

between packages:
If you change a class in one package,
you may have to change something in
packages that depend on it

 A good architecture minimizes
dependencies
 Fewer dependencies means lower

coupling
 Dependency cycles are especially

undesirable

University of Toronto Department of Computer Science

© Easterbrook 2004 18

…Dependency Cycles

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Application Logic Layer Package

Storage Layer Package

Presentation Layer Package

Architectural Patterns

E.g. 3 layer
architecture:

Presentation
Layer

Application
Logic Layer

Storage
Layer

Java AWT

Application
Windows

Control
Objects

Business
Objects

Object to
Relational

JDBC

Java SQL


