
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 16:
Modelling “events”

 Focus on states or events?
 E.g. SCR table-based models
 Explicit event semantics

 Comparing notations for state transition models
 FSMs vs. Statecharts vs. SCR

 Checking properties of state transition models
 Consistency Checking
 Model Checking, using Temporal Logic

When to use formal methods

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

What are we modelling?

 Starting point:
 States of the environment
 (Application domain) events that change the state of the environment

 Requirements expressed as:
 Constraints over states and events of the application domain

E.g. “When the aircraft is in the air, the pilot should be prevented from accidentally engaging
the reverse thrust”

 To get to a specification:
 For each relevant application domain event, find a corresponding input event
 For each relevant state, ensure there is a way for the machine to detect it
 For each required action, find a corresponding output event

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

software
Monitored

 Variables

Enviro-
ment

System

input
devices

input
data

items

data
items

output

devices
output Controlled

 Variables

Enviro-
ment

Tabular Specifications: SCR

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)ACpower =OffOn

ModesEventsNoFailurefalsetrueACFailure, HeatFailuretruefalseBuzzer =OffOn

ModesEventsNoFailuretruefalseACFailuretemp > temp0temp <= temp0HeatFailurefalsewaterlevel =lowWarning light =OffOn

VariableTypeInitial ValueUnitsWarningFlagbooleanfalse-OtherFlagbooleantrueFudgelevelenumeratedone-Waterlevelreal0.0mtemperaturereal0.0degrees CBlipCounterinteger0milesTimeNowreal100.0secAirBrakeAccreal0.0m/sec

ConstantTypeValueUnitsLowTempinteger15degrees CHighTempinteger23degrees CMaxTimeOutinteger300millisecReferenceSafetyLevelsafetytypelow-TempMargininteger5degrees C

TypeBaseTypeValuesUnitsWarningLevelenumeratedlow,med,high-Temperatureinteger-100..100degrees CWaterlevelinteger0..100metersFlagenumeratedon, off-

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables
CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveTimeout@F---No Failure-ff@TACFailure

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)Heater =OffOn

ModesEventsNoFailure@T(INMODE)neverSensorFail@T(reset=on)@T(INMODE)TimeoutalwaysneverACFailure, HeatFailurenever@T(INMODE)Warning light =OffOn

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

SCR basics
Modes and Mode classes

 A mode class is a finite state machine, with states called system modes
 Transitions in each mode class are triggered by events

 Complex systems described using several mode classes operating in parallel
 System State is defined as:

 the system is in exactly one mode from each mode class…
 …and each variable has a unique value

 Events
 Single input assumption - only one input event can occur at once
 An event occurs when any system entity changes value

 An input event occurs when an input variable changes value
 Notation:

 We may need to refer to both the old and new value of a variable:
 Used primed values to denote values after the event
 @T(c) ≡ ¬c ∧ c’ e.g. @T(y=1) ≡ y≠1 ∧ y’=1
 @F(c) ≡ c ∧ ¬c’

 A conditioned event is an event with a predicate
 @T(c) WHEN d ≡ ¬c ∧ c’ ∧ d

Source: Adapted from Heitmeyer et. al. 1996.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

 Mode Class Tables
 Define a (disjoint) set of modes (states) that the software can be in.
 Each mode class has a mode table showing which events cause mode changes

 A mode table defines a partial function from modes and events to modes

 Example:

Defining Mode Classes
Source: Adapted from Heitmeyer et. al. 1996.

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive

@T t - - Heat

@T - - t AC

Inactive @F - - - Off

- @T - - Heat

- - - @T AC

Heat @F - - - Off

- - @T - Inactive

AC @F - - - Off

- - @T - Inactive

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

 Event Tables
 defines how a controlled variable changes in response to input events
 Defines a partial function from modes and events to variable values
 Example:

 Condition Tables
 defines the value of a controlled variable under every possible condition
 Defines a total function from modes and conditions to variable values
 Example:

Defining Controlled Variables
Source: Adapted from Heitmeyer et. al. 1996.

Modes

Heat target - temp ! 5 target - temp >5

AC temp - target ! 5 temp - target >5

Inactive, Off true never

Warning light = Off On

Modes

Heat, AC @C(target) never

Inactive, Off never @C(target)

Ack_tone = Beep Clang

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

offhook

idle connectedringtonedialtone

busytone
on hook

on hook
on hook

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

Refresher: FSMs and Statecharts

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

SCR Equivalent
Current
Mode

offhook dial
callee
offhook

New
Mode

Idle @T - - Dialtone

Dialtone - @T F Ringtone

- @T T Busytone

@F - - Idle

Busytone @F - - Idle

Ringtone - - @T Connected

@F - - Idle

Connected - - @F Dialtone

AC @F - - Idle

 Interpretation:
 In Dialtone: @T(offhook) WHEN callee_offhook takes you to Ringing
 In Ringtone: @F(offhook) takes you to Idle
 Etc…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

State Machine Models vs. SCR
 All 3 models on previous slides are (approx) equivalent

 State machine models
 Emphasis is on states & transitions

 No systematic treatment of events
 Different event semantics can be applied

 Graphical notation easy to understand (?)
 Composition achieved through statechart nesting
 Hard to represent complex conditions on transitions
 Hard to represent real-time constraints (e.g. elapsed time)

 SCR models
 Emphasis is on events

 Clear event semantics based on changes to environmental variables
 Single input assumption simplifies modelling

 Tabular notation easy to understand (?)
 Composition achieved through parallel mode classes
 Hard to represent real-time constraints (e.g. elapsed time)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Formal Analysis
 Consistency analysis and typechecking

 “Is the formal model well-formed?”
 [assumes a modeling language where well-formedness is a useful thing to check]

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes

 State exploration
 E.g. use a model checking to find traces that satisfy some property

 Checking application properties:
 “will the system ever do the following...”

 Verifying design refinement
 “does the design meet the requirements?”

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

E.g. Consistency Checks in SCR
 Syntax

 did we use the notation correctly?

 Type Checks
 do we use each variable correctly?

 Disjointness
 is there any overlap between rows of the mode tables?

 ensures we have a deterministic state machine

 Coverage
 does each condition table define a value for all possible conditions?

 Mode Reachability
 is there any mode that cannot ever happen?

 Cycle Detection
 have we defined any variable in terms of itself?

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Model Checking
 Has revolutionized formal verification:

 emphasis on partial verification of partial models
 E.g. as a debugging tool for state machine models

What it does:
 Mathematically – computes the “satisfies” relation:

 Given a temporal logic theory, checks whether a given finite state machine is a
model for that theory.

 Engineering view – checks whether properties hold:
 Given a state machine model, checks whether the model obeys various safety and

liveness properties

 How to apply it in RE:
 The model is an (operational) Specification

 Check whether particular requirements hold of the spec
 The model is (an abstracted portion of) the Requirements

 Carry out basic validity tests as the model is developed
 The model is a conjunction of the Requirements and the Domain

 Formalise assumptions and test whether the model respects them

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Model Checking Basics
 Build a finite state machine model

 E.g. PROMELA - processes and message channels
 E.g. SCR - tables for state transitions and control actions
 E.g. RSML - statecharts + truth tables for action preconditions

 Express validation property as a logic specification
 Propositions in first order logic (for invariants)
 Temporal Logic (for safety & liveness properties)

 E.g. CTL, LTL, ...

 Run the model checker:
 Computes the value of: model property

 Explore counter-examples
 If the answer is ‘no’ find out why the property doesn’t hold
 Counter-example is a trace through the model

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Temporal Logic
 LTL (Linear Temporal Logic)

 Expresses properties of infinite traces through a state machine model
 adds two temporal operators to propositional logic:

◊p - p is true eventually (in some future state)
p - p is true always (now and in the future)

 CTL (Computational Tree Logic)
 branching-time logic - can quantify over possible futures
 Each operator has two parts:

EX p - p is true in some next states
AX p - p is true in all next states
EF p - along some path, p is true in some future state
AF p - along all paths…
E[p U q] - along some path, p holds until q holds;
A[p U q] - along all paths…
EG p - along some path, p holds in every state;
AG p - along all paths…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Example

 Sample Properties
 If you are connected you can hang up:
 AG(CONNECTED → EX(¬OFFHOOK)
 If you are connected, hanging up always disconnects you:
 AG(CONNECTED → AX(¬OFFHOOK → ¬CONNECTED))
 A connection doesn’t start until you pick up the phone:
 AG(¬CONNECTED → A[¬CONNECTED U OFFHOOK])
 If you make a call, the phone cannot ring without returning to idle first:
 AG((RINGTONE ∨ BUSYTONE) → A[¬RINGING U IDLE])

offhook

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Complexity Issues
 The problem:

 Model Checking is exponential in the size of the model and the property
 Current MC engines can explore 10120 states…

 using highly optimized data structures (BDDs)
 …and state space reduction techniques

 …that’s roughly 400 propositional variables
 integer and real variables cause real problems

 Realistic models are often to large to be model checked

 The solution:
 Abstraction:

 Replace related groups of states with a single superstate
 Replace real & integer variables with propositional variables

 Projection:
 Slice the model to remove parts unrelated to the property

 Compositional verification - break large model into smaller pieces
 (But it’s hard to verify that the composition preserves properties)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Summary
 SCR vs UML Statecharts

 Tabular view allows more detail - e.g. complex conditions
 Graphical view shows hierarchical structure more clearly
 Event Semantics

 SCR has a precisely defined meaning for “events”
 UML Statecharts do not

 Uses:
 UML statecharts good for sketches, design models
 SCR good for writing precise specifications

 Analysis:
 “Model checkers” are debugging tools for state machine models
 Write temporal logic properties and test whether they hold
 Very good at finding subtle errors in specifications

