
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 17:
Modelling System Interactions

 Interactions with the new system
 How will people interact with the system?
 When/Why will they interact with the system?

 Use Cases
 introduction to use cases
 identifying actors
 identifying cases
 Advanced features

 Sequence Diagrams
 Temporal ordering of events involved in a use case



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Moving towards specification
What functions will the new system provide?

 How will people interact with it?
 Describe functions from a user’s perspective

 UML Use Cases
 Used to show:

 the functions to be provided by the system
 which actors will use which functions

 Each Use Case is:
 a pattern of behavior that the new system is required to exhibit
 a sequence of related actions performed by an actor and the system via a

dialogue.

 An actor is:
 anything that needs to interact with the system:

 a person
 a role that different people may play
 another (external) system.



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Campaign
Manager

Accountant

Change a
client contact

Add a new client

Record client payment

Staff contact

Use Case Diagrams
 Capture the relationships between actors and Use

Cases



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Staff contact

Actor

Change client 
contact

Communication
association System

 boundary

Use case

Notation for Use Case Diagrams



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Add new 
staff member

Add new 
staff grade

Calculate staff 
bonuses

Change grade
for staff member

Accountant

Change rate
for staff grade

Example



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

<<extends>>

Check Campaign
Budget

Print
Campaign
Summary

<<uses>>

Find Campaign

<<extends>> and <<uses>>
 <<extends>> when one use case adds behaviour to a base case

 used to model a part of a use case that the user may see as optional system behavior;
 also models a separate sub-case which is executed conditionally.

 <<uses>>: one use case invokes another (like a procedure call);
 used to avoid describing the same flow of events several times
 puts the common behavior in a use case of its own.



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Driver Mechanic

<<extends>>
<<uses>>

GasAttendant

<<uses>>

<<uses>>

Sample use cases for a car

<<uses>>
Fix CarCheck OilDrive

Fill Up

Fix car on
the roadTurn On

Engine



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Provide
constraintsEdit

ConstraintsWithdraw

Validate
User

Schedule
meeing

Initiator Participant

<<uses>>

<<extends>>

<<uses>>

Meeting Scheduler Example

Generate
Schedule

<<u
ses

>>
<<uses>> <<

us
es
>>



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Generalizations
 Actor classes

 It’s sometimes useful to identify classes
of actor
 E.g. where several actors belong to a

single class
 Some use cases are needed by all members

in the class
 Other use cases are only needed by some

members of the class
 Actors inherit use cases from the class

 Use Case classes
 Sometimes useful to identify a

generalization of several use casesGeneralisation relations:
Read as: “is a member of” 
or just “is a”



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Identifying Actors
 Ask the following questions:

 Who will be a primary user of the system? (primary actor)
 Who will need support from the system to do her daily tasks?
 Who or what has an interest in the results that the system produces ?

 Who will maintain, administrate, keep the system working? (secondary
actor)

 Which hardware devices does the system need?
 With which other systems does the system need to interact with?

 Look for:
 the users who directly use the system
 also others who need services from the system



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Finding Use Cases
 For each actor, ask the following questions:

 Which functions does the actor require from the system?
 What does the actor need to do ?
 Does the actor need to read, create, destroy, modify, or store some kinds

of information in the system ?
 Does the actor have to be notified about events in the system?
 Does the actor need to notify the system about something?
 What do those events require in terms of system functionality?
 Could the actor’s daily work be simplified or made more efficient through

new functions provided by the system?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Documenting Use Cases
 For each use case:

 prepare a “flow of events” document, written from an actor’s point of view.
 describe what the system must provide to the actor when the use case is

executed.

 Typical contents
 How the use case starts and ends;
 Normal flow of events;
 Alternate flow of events;
 Exceptional flow of events;

 Documentation style:
 Choice of how to represent the use case:

 English language description
 Collaboration Diagrams
 Sequence Diagrams



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Modelling Sequences of Events
 Objects “own” information and behaviour

 they have attributes and operations relevant to their responsibilities.
 They don’t “know” about other objects’ information, but can ask for it.
 To carry out business processes, objects have to collaborate.

 …by sending messages to one another to invoke each others’ operations
 Objects can only send messages to one another if they “know” each other

 I.e. if there is an association between them.

 Describe a Use Case using Sequence Diagrams
 Sequence diagrams show step-by-step what’s involved in a use case

 Which objects are relevant to the use case
 How those objects participate in the function

 You may need several sequence diagrams to describe a single use case.
 Each sequence diagram describes one possible scenario for the use case

 Sequence diagrams…
 …should remain easy to read and understand.
 …do not include complex control logic



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Example Sequence Diagram

Call() Respond()

What’s up?()

Give mtg details()
[for all participants] *Inform() 

[for all participants] *Remind()

Prompt()

Show schedule()

[decision=OK] ScheduleOK’ed()

Initiator
:Person

Participant
:Person

[for all participants]
*Inform() 

Staff
:Person

Scheduler
:Person

Acknowledge()

Acknowledge()
condition

iteration

participating
object

Tim
e



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Another Example



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Branching messages, etc

:CustomerP :PrinterP

PrintFile(file)

:Printer

GetStatus()

:Queue

[Ready]Print()
[Busy]

PutInQueue
(file)

[OutOfService]
CallRepair

Ready(file)
GetNext()

Branching

Ready(file)

Asynchronous

Done

Lifeline Inactive

Active



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Don’t forget what we’re modelling
 During analysis

 we want to know about the application domain and the requirements
 …so we develop a course-grained model to show where responsibilities are,

and how objects interact
 Our models show a message being passed, but we don’t worry too much about the

contents of each message
 To keep things clear, use icons to represent external objects and actors, and

boxes to represent system objects.

 During design
 we want to say how the software should work
 … so we develop fine-grained models to show exactly what will happen when

the system runs
 E.g. show the precise details of each method call.


