
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 18:
Non-Functional Requirements (NFRs)

 Definitions
 Quality criteria; metrics
 Example NFRs

 Product-oriented Software Qualities
 Making quality criteria specific
 Catalogues of NFRs
 Example: Reliability

 Process-oriented Software Qualities
 Softgoal analysis for design tradeoffs

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

What are Non-functional Requirements?

 Functional vs. Non-Functional
 Functional requirements describe what the system should do

 functions that can be captured in use cases
 behaviours that can be analyzed by drawing sequence diagrams, statecharts, etc.
 … and probably trace to individual chunks of a program

 Non-functional requirements are global constraints on a software system
 e.g. development costs, operational costs, performance, reliability,

maintainability, portability, robustness etc.
 Often known as software qualities, or just the “ilities”
 Usually cannot be implemented in a single module of a program

 The challenge of NFRs
 Hard to model
 Usually stated informally, and so are:

 often contradictory,
 difficult to enforce during development
 difficult to evaluate for the customer prior to delivery

 Hard to make them measurable requirements
 We’d like to state them in a way that we can measure how well they’ve been met

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Example NFRs
 Interface requirements

 how will the new system interface
with its environment?

User interfaces and “user-friendliness”
Interfaces with other systems

 Performance requirements
 time/space bounds

workloads, response time, throughput
and available storage space
e.g. ”the system must handle 1,000
transactions per second"

 reliability
the availability of components
integrity of information maintained and
supplied to the system
e.g. "system must have less than 1hr
downtime per three months"

 security
E.g. permissible information flows, or
who can do what

 survivability
E.g. system will need to survive fire,
natural catastrophes, etc

 Operating requirements
 physical constraints (size, weight),
 personnel availability & skill level
 accessibility for maintenance
 environmental conditions
 etc

 Lifecycle requirements
 “Future-proofing”

Maintainability
Enhanceability
Portability
expected market or product lifespan

 limits on development
E.g development time limitations,
resource availability
methodological standards
etc.

 Economic requirements
 e.g. restrictions on immediate and/or

long-term costs.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Approaches to NFRs
 Product vs. Process?

 Product-oriented Approaches
 Focus on system (or software) quality
 Capture operational criteria for each requirement
 … so that we can measure it once the product is built

 Process-oriented Approaches
 Focus on how NFRs can be used in the design process
 Analyze the interactions between NFRs and design choices
 … so that we can make appropriate design decisions

Quantitative vs. Qualitative?
 Quantitative Approaches

 Find measurable scales for the quality attributes
 Calculate degree to which a design meets the quality targets

 Qualitative Approaches
 Study various relationships between quality goals
 Reason about trade-offs etc.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Software Qualities
 Think of an everyday object

 e.g. a chair - how would you measure it’s “quality”?
 construction quality? (e.g. strength of the joints,…)
 aesthetic value? (e.g. elegance,…)
 fit for purpose? (e.g. comfortable,…)

 All quality measures are relative
 there is no absolute scale
 we can sometimes say A is better than B…

 … but it is usually hard to say how much better!

 For software:
 construction quality?

 software is not manufactured
 aesthetic value?

 but most of the software is invisible
 aesthetic value is a marginal concern

 fit for purpose?
 Need to understand the purpose

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Fitness
 Software quality is all about fitness to purpose

 does it do what is needed?
 does it do it in the way that its users need it to?
 does it do it reliably enough? fast enough? safely enough? securely enough?
 will it be affordable? will it be ready when its users need it?
 can it be changed as the needs change?

Quality is not a measure of software in isolation
 it measures the relationship between software and its application domain

 cannot measure this until you place the software into its environment…
 …and the quality will be different in different environments!

 during design, we need to predict how well the software will fit its purpose
 we need good quality predictors (design analysis)

 during requirements analysis, we need to understand how fitness-for-
purpose will be measured

 What is the intended purpose?
 What quality factors will matter to the stakeholders?
 How should those factors be operationalized?

Source: Budgen, 1994, pp58-9

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Factors vs. Criteria
Quality Factors

 These are customer-related concerns
 Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

 Design Criteria
 These are technical (development-oriented) concerns such as anomaly

management, completeness, consistency, traceability, visibility,...

Quality Factors and Design Criteria are related:
 Each factor depends on a number of associated criteria:

 E.g. correctness depends on completeness, consistency, traceability,...
 E.g. verifiability depends on modularity, self-descriptiveness and simplicity

 There are some standard mappings to help you…

 During Analysis:
 Identify the relative importance of each quality factor

 From the customer’s point of view!
 Identify the design criteria on which these factors depend
 Make the requirements measurable

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Boehm’s NFR list

General
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Making Requirements Measurable
We have to turn our vague ideas about quality into

measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usability

minutes
taken for
some user
task???

time taken
to learn

how to use?

complexity

count
procedure
calls???

information
flow between

modules?

reliability

run it and
count crashes
per hour???

mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Example Metrics

percentage of target-dependent statements
number of target systems

PortabilityPortability

time to restart after failure
percentage of events causing failure

RobustnessRobustness

mean-time-to-failure,
probability of unavailability
rate of failure, availability

ReliabilityReliability

training time
number of help frames

Ease of UseEase of Use

Kbytes
number of RAM chips

SizeSize

transactions/sec
response time
screen refresh time

SpeedSpeed

MetricQuality

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Example: Measuring Reliability
 Definition

 the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

 Comments:
 Reliability can be defined in terms of a percentage (say, 99.999%)
 This may have different meaning for different applications:

 Telephone network: the entire network can fail no more than, on average, 1hr per
year, but failures of individual switches can occur much more frequently

 Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.

 Best we can do may be something like:
 "...No more than X bugs per 10KLOC may be detected during integration and

testing; no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z; the
system must be 100% operational 99.9% of the calendar year during its first
year of operation..."

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Measuring Reliability…
 Example reliability requirement:

 “The software shall have no more than X bugs per thousand lines of code”
 ...But is it possible to measure bugs at delivery time?

 Use bebugging
 Measures the effectiveness of the testing process
 a number of seeded bugs are introduced to the software system

 then testing is done and bugs are uncovered (seeded or otherwise)

Number of bugs = # of seeded bugs x # of detected bugs
in system # of detected seeded bugs

 ...BUT, not all bugs are equally important!

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Example model: Reliability growth
Motorola’s Zero-failure testing model

 Predicts how much more testing is needed to establish a given reliability goal
 basic model:

failures = ae-b(t)

 Reliability estimation process
 Inputs needed:

 fd = target failure density (e.g. 0.03 failures per 1000 LOC)
 tf = total test failures observed so far
 th = total testing hours up to the last failure

 Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

 Result gives the number of further failure free hours of testing needed to
establish the desired failure density
 if a failure is detected in this time, you stop the clock and recalculate

 Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Making Requirements Measurable
 Define ‘fit criteria’ for each requirement

 Give the ‘fit criteria’ alongside the requirement
 E.g. for new ATM software

 Requirement: “The software shall be intuitive and self-explanatory”
 Fit Criteria: “95% of existing bank customers shall be able to withdraw money

and deposit cheques within two minutes of encountering the product for the first
time”

 Choosing good fit criteria
 Stakeholders are rarely this specific
 The right criteria might not be obvious:

 Things that are easy to measure aren’t necessarily what the stakeholders want
 Standard metrics aren’t necessary what stakeholders want

 Work with stakeholders to find good fit criteria

 Proxies
 Sometimes the quality is not directly measurable. Seek indicators instead:

 E.g. “Few data entry errors” as proxy for Usability
 E.g. “Loose coupling” as a proxy for Maintainability

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Using softgoal analysis
 Goal types:

 Non-functional Requirement
 Satisficing Technique

e.g. a design choice
 Claim

supporting/explaining a choice

 Contribution Types:
 AND links (decomposition)
 OR links (alternatives)
 Sup links (supports)
 Sub links (necessary subgoal)

 Evaluation of goals
 Satisficed
 Denied
 Conflicting
 Undetermined

Source: Chung, Nixon, Yu & Mylopoulos, 1999

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

NFR Catalogues
Source: Cysneiros & Yu, 2004

 Predefined catalogues of NFR decomposition
 Provides a knowledge base to check coverage of an NFR
 Provides a tool for elicitation of NFRs
 Example:

