
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 18:
Verification and Validation

 Refresher:
 definitions for V&V

 Validation Techniques
 Prototyping
 Model Analysis (e.g. Model Checking)
 Inspection

 Verification Techniques
 Making Specifications Traceable (see lecture 20)
 Testing (not covered in this course)
 Code Inspection (not covered in this course)
 Code analysis (not covered in this course)

 Independent V&V

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Verification and Validation

Problem
Statement

Implementation
Statement

System

Va
lid
at
io
n

Ve
rif
ic
at
io
n

 Validation:
 “Are we building the right

system?”
 Does our problem statement

accurately capture the real
problem?

 Did we account for the needs of
all the stakeholders?

 Verification:
 “Are we building the system

right?”
 Does our design meet the spec?
 Does our implementation meet the

spec?
 Does the delivered system do

what we said it would do?
 Are our requirements models

consistent with one another?

Problem
Situation

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Refresher: V&V Criteria

 Some distinctions:
 Domain Properties: things in the application domain that are true anyway
 Requirements: things in the application domain that we wish to be made true
 Specification: a description of the behaviours the program must have in

order to meet the requirements

 Two verification criteria:
 The Program running on a particular Computer satisfies the Specification
 The Specification, given the Domain properties, satisfies the Requirements

 Two validation criteria:
 Did we discover (and understand) all the important Requirements?
 Did we discover (and understand) all the relevant Domain properties?

Source: Adapted from Jackson, 1995, p170-171

Application Domain Machine Domain

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

V&V Example
 Example:

 Requirement R:
 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”

 Domain Properties D:
 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification
 Does the flight software, P, running on the aircraft flight computer, C,

correctly implement S?
 Does S, in the context of assumptions D, satisfy R?

 Validation
 Are our assumptions, D, about the domain correct? Did we miss any?
 Are the requirements, R, what is really needed? Did we miss any?

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Shortcuts in the inquiry cycle
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model

Check properties
of the model

(what is wrong with
the model?)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Prototyping
“A software prototype is a partial implementation constructed primarily to

enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

“Prototyping is the process of building a working model of the system” [Agresti
1986]

 Approaches to prototyping
 Presentation Prototypes

 used for proof of concept; explaining design features; etc.
 explain, demonstrate and inform – then throw away

 Exploratory Prototypes
 used to determine problems, elicit needs, clarify goals, compare design options
 informal, unstructured and thrown away.

 Breadboards or Experimental Prototypes
 explore technical feasibility; test suitability of a technology
 Typically no user/customer involvement

 Evolutionary (e.g. “operational prototypes”, “pilot systems”):
 development seen as continuous process of adapting the system
 “prototype” is an early deliverable, to be continually improved.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Throwaway or Evolve?
Throwaway Prototyping

Purpose:
 to learn more about the problem or its

solution…
 discard after desired knowledge is gained.

Use:
 early or late

Approach:
 horizontal - build only one layer (e.g. UI)
 “quick and dirty”

Advantages:
 Learning medium for better convergence
 Early delivery → early testing → less cost
 Successful even if it fails!

Disadvantages:
 Wasted effort if reqts change rapidly
 Often replaces proper documentation of

the requirements
 May set customers’ expectations too high
 Can get developed into final product

 Evolutionary Prototyping
Purpose

 to learn more about the problem or its
solution…

 …and reduce risk by building parts early
Use:

 incremental; evolutionary
Approach:

 vertical - partial impl. of all layers;
 designed to be extended/adapted

Advantages:
 Requirements not frozen
 Return to last increment if error is found
 Flexible(?)

Disadvantages:
 Can end up with complex, unstructured

system which is hard to maintain
 early architectural choice may be poor
 Optimal solutions not guaranteed
 Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Model Analysis
 Verification

 “Is the model well-formed?”
 Are the parts of the model consistent with one another?

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes
 “will the system ever do the following...”

 State exploration
 E.g. use model checking to find traces that satisfy some property

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Basic Cross-Checks for UML
Use Case Diagrams
Does each use case have a user?

 Does each user have at least one use case?
Is each use case documented?

 Using sequence diagrams or equivalent

Class Diagrams
Does the class diagram capture all the

classes mentioned in other diagrams?
Does every class have methods to get/set

its attributes?

Sequence Diagrams
Is each class in the class diagram?
Can each message be sent?

 Is there an association connecting sender and
receiver classes on the class diagram?

 Is there a method call in the sending class for
each sent message?

 Is there a method call in the receiving class
for each received message?

StateChart Diagrams
Does each statechart diagram capture (the

states of) a single class?
 Is that class in the class diagram?

Does each transition have a trigger event?
 Is it clear which object initiates each event?
 Is each event listed as an operation for that

object’s class in the class diagram?
Does each state represent a distinct

combination of attribute values?
 Is it clear which combination of attribute

values?
 Are all those attributes shown on the class

diagram?
Are there method calls in the class

diagram for each transition?
 …a method call that will update attribute

values for the new state?
 …method calls that will test any conditions on

the transition?
 …method calls that will carry out any actions

on the transition?

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Reviews, Walkthroughs, Inspections…

 These definitions are not
widely agreed!
 Other terms used:

 Formal Technical Reviews (FTRs)
 Formal Inspections

 “Formality” can vary:
 informal:

 meetings over coffee,
 regular team meetings,
 etc.

 formal:
 scheduled meetings,
 prepared participants,
 defined agenda,
 specific format,
 documented output

 “Management reviews”
 E.g. preliminary design review (PDR), critical

design review (CDR), …
 Used to provide confidence that the design is

sound
 Attended by management and sponsors (customers)
 Often just a “dog-and-pony show”

 “Walkthroughs”
 developer technique (usually informal)
 used by development teams to improve quality of

product
 focus is on finding defects

 “(Fagan) Inspections”
 a process management tool (always formal)
 used to improve quality of the development

process
 collect defect data to analyze the quality of the

process
 written output is important
 major role in training junior staff and transferring

expertise

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Benefits of formal inspection
 Formal inspection works well for programming:

 For applications programming:
 more effective than testing
 most reviewed programs run correctly first time
 compare: 10-50 attempts for test/debug approach

 Data from large projects
 error reduction by a factor of 5; (10 in some reported cases)
 improvement in productivity: 14% to 25%
 percentage of errors found by inspection: 58% to 82%
 cost reduction of 50%-80% for V&V (even including cost of inspection)

 Effects on staff competence:
 increased morale, reduced turnover
 better estimation and scheduling (more knowledge about defect profiles)
 better management recognition of staff ability

 These benefits also apply to requirements inspections
 Many empirical studies investigated variant inspection processes
 Mixed results on the relative benefits of different processes

Source: Adapted from Blum, 1992, Freedman and Weinberg, 1990, & notes from Philip Johnson.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Roles
Formal Walkthrough

 Review Leader
 chairs the meeting
 ensures preparation is done
 keeps review focussed
 reports the results

 Recorder
 keeps track of issues raised

 Reader
 summarizes the product piece by

piece during the review

 Author
 should actively participate (e.g. as

reader)

 Other Reviewers
 task is to find and report issues

Fagan Inspection

 Moderator
 must be a competent programmer
 should be specially trained
 could be from another project

 Designer
 programmer who produced the design

being inspected

 Coder/Implementor
 programmer responsible for

translating the design to code

 Tester
 person responsible for

writing/executing test cases

Source: Adapted from Blum, 1992, pp369-373

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Structuring the inspection
 Checklist

 uses a checklist of questions/issues
 review structured by issue on the list

Walkthough
 one person presents the product step-by-step
 review is structured by the product

 Round Robin
 each reviewer in turn gets to raise an issue
 review is structured by the review team

 Speed Review
 each reviewer gets 3 minutes to review a chunk, then passes to the next

person
 good for assessing comprehensibility!

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Why use inspection?
 Inspections are very effective

 Code inspections are better than testing for finding defects
 For Specifications, inspection is all we have (you can’t “test” a spec!)

 Key ideas:
 Preparation: reviewers inspect individually first
 Collection meeting: reviewers meet to merge their defect lists
 Log each defect, but don’t spend time trying to fix it
 The meeting plays an important role:

 Reviewers learn from one another when they compare their lists
 Additional defects are uncovered

 Defect profiles from inspection are important for process improvement

Wide choice of inspection techniques:
 What roles to use in the meeting?
 How to structure the meeting?
 What kind of checklist to use?

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Independent V&V
 V&V performed by a separate contractor

 Independent V&V fulfills the need for an independent technical opinion.
 Cost between 5% and 15% of development costs
 Studies show up to fivefold return on investment:

 Errors found earlier, cheaper to fix, cheaper to re-test
 Clearer specifications
 Developer more likely to use best practices

 Three types of independence:
 Managerial Independence:

 separate responsibility from that of developing the software
 can decide when and where to focus the V&V effort

 Financial Independence:
 Costed and funded separately
 No risk of diverting resources when the going gets tough

 Technical Independence:
 Different personnel, to avoid analyst bias
 Use of different tools and techniques

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Summary
 Validation checks you are solving the right problem

 Prototyping - gets customer feedback early
 Inspection - domain experts read the spec carefully
 Formal Analysis - mathematical analysis of your models
 …plus meetings & regular communication with stakeholders

 Verification checks your engineering steps are sound
 Consistency checking - do the models agree with one another?
 Traceability - do the design/code/test cases reflect the requirements?

 Use appropriate V&V:
 Early customer feedback if your models are just sketches
 Analysis and consistency checking if your models are specifications
 Independence important if your system is safety-critical

