
CSC444F Software Engineering I

Tutorial Assignment 4
This assignment is handed out during the tutorial of week 8 (Week of 22/10/2001)
This assignment is due at the start of your week 10 tutorial (i.e. on 5/11/2001).
To avoid late penalties, submit it to your TA within the first half hour of the tutorial.

Penalties
Reports submitted up to 48 hours late: -50%.
Reports submitted more than 48 hours late will not be graded.

Grading Scheme
This assignment constitutes 10% of your grade for the course.
This report is a team assignment. Each team should submit a single report, and all members of the team will receive the
same grade. See the course orientation handout for details on team grading. You should include a short statement about
which team members wrote which parts of this assignment. If some parts were joint efforts, make this clear.

Content
The assignment is to critically assess the quality of the three modules you bought at the end of phase 1, and to report on
your integration effort.

You should submit the following:

1) State which modules you bought, from which teams. Give a brief (1 paragraph each) description of why you chose
each of these modules from among their competitors.

2) For each of the modules you bought at the end of phase 1, a description of the quality of the module. Include in
your report a description of:
- the quality factors that you used to make the assessment;
- why those factors are important to you (ie. how do they relate to “fitness for purpose”);
- the metrics you used to assess these quality factors, and
- the actual data collected for each metric.
Conclude by comparing your reasons for buying the module with your assessment of its quality – would you make
the same purchasing decision again?

3) Provide a summary of the modifications you have made to the modules you bought at the end of phase 1. To do this
you should define a small number of classes that characterize different types of modification you have made, based
on both the original location of the problem (e.g. was it a problem in the original spec, a problem of interpreting the
spec, a problem in the interface standards, a design error, a coding error, etc) and the type of the problem (e.g.
missing function, extra function, wrongly implemented, misinterpretation, incorrect assumption, incorrect interface,
etc). Provide summary data for numbers of modifications in each class. Then choose one modification from each
class, and describe:
- how you discovered the problem;
- whether the problem could have been anticipated and avoided by improving the original specification;
- whether the team that built the module could have predicted the need for the modification;
- what the team that built the module could have done (if anything) to make the modification easier.

4) Briefly describe your integration testing strategy, and describe (in detail) four of the test cases you used for
integration testing, indicating which tests passed and which failed. What other kinds of testing did you use? What
are the strengths and weaknesses of your integration testing strategy?



See also: Lecture notes for lectures 12 and 13

Background Information
The ultimate measure of design quality is fitness to purpose. This means that to measure software quality we have to
understand what the purposes are for which it is intended. Note this also means that quality is not a measure of software
in isolation; it is a measure of the relationship between software and its application domain. This means that an
assessment of its quality depends on the context, and if you change the context, the assessment of quality may change –
software that’s good for one purpose may not be so good for another purpose.
Measurement of quality generally starts by identifying a set of critical quality factors, and then refining these down to
measurable attributes of the software. There is no agreed way of doing this. Different quality assessors disagree about
what various measurable attributes of software actually tell you about its quality. Two well-known quality factor lists
are those of Boehm and McCall. They differ, both on the factors they identify and on the mappings between higher level
and lower level factors. Note that both stop before they get to measurable attributes – each of their bottom level factors
still needs to be mapped onto measurable aspects of the software (i.e. things that you can actually count!).
Boehm’s list of software qualities:

General utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

Self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

Self-descriptiveness

structuredness

conciseness

legibility

augmentability
McCall’s list of software qualities:

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency
traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality


