
Page 1 of 4 Pages

UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, DECEMBER 1999

CSC444F - SOFTWARE ENGINEERING I
Examiner: Steve Easterbrook

Exam type: A (Closed Book; no aids permitted)
Calculator type: 1 (any programmable and non-programmable calculator)

Duration: 2.5 hours.

This exam paper consists of 8 questions on 4 pages.
Answer ANY 5 questions. All questions have equal weight (20 marks per question)

QUESTION 1 (Procedural and Data Abstractions)
a) What is abstraction? Why is it so useful in software engineering? [3 marks]
b) A procedure can be said to have referential transparency if it behaves in the same way no matter

where it is used, and encapsulation if the procedure can be used correctly without knowing how it
is implemented. Why are these properties important for procedures, and how can they be
achieved? [4 marks]

c) A procedural abstraction has five elements: ‘parameters’, ‘requires’, ‘effects’, ‘modifies’, and
‘raises’. What is the role of each of these elements, and why is each element needed? [5 marks]

d) What is the difference between object-oriented design and object-oriented programming? How
can object oriented designs be implemented in a procedural programming language? [4 marks]

e) You are assigned to work on a project to develop a controller for a new satellite. To save money,
your manager estimates you could reuse about 90% of the software from one of two similar
satellites the company built in the past. One system has no known bugs, but the code is
undocumented and uncommented. The other has 25 known non-critical bugs, but every procedure
is documented with a procedural abstraction. Which system would you choose to work with, and
why? [4 marks]

QUESTION 2 (Design Representations)
a) The four key viewpoints for representing software design information are structural, behavioural,

functional and data modelling. For each of these four, explain what types of information the
viewpoint represents, and give examples of notations used. [4 marks]

b) What are the advantages and disadvantages of using viewpoints to separate out different kinds of
information in software design? [4 marks]

c) Some design notations lend themselves well to measuring different software quality indicators.
Pick a design notation you are familiar with and describe how well it supports measurement of
design quality. [4 marks]

d) Software architectural styles, such as pipe-and-filter and layered systems are structural
viewpoints. How would you add behavioural and data-modelling viewpoints to these architectural
descriptions? [4 marks]

e) The company you work for has a large amount of legacy code, for which no documentation
exists. You are assigned to lead a team to develop a reverse engineering tool to automatically
extract some design representations from the legacy code. What design representations would you
choose to extract? Why? [4 marks]



Page 2 of 4 Pages

QUESTION 3 (Testing)
a) Why is random testing insufficient even for relatively small programs? [2 marks]
b) Unit testing is the process of testing a single program unit (e.g. a procedure) in isolation from the

rest of the program. How would you go about choosing test cases for unit testing? [4 marks]
c) Integration testing can be tacked top-down or bottom-up. Describe each of these strategies. Why

is integration testing harder than unit testing? [4 marks]
d) Explain the purpose of each of the following. What types of error is each likely to find?

i) Endurance testing
ii) Recoverability testing
iii) Regression testing [6 marks]

e) The company you work for develops internet applications. To reduce time to market, the
company is considering dispensing altogether with integration testing. Instead, the company plans
to rely on Beta testing, in which free trial versions of new software will be sent to existing, trusted
customers to try out, with the agreement that they will report any problems they encounter. What
are the advantages and disadvantages of this approach? [4 marks]

QUESTION 4 (Verification and Validation)
a) Define the terms Verification and Validation. Why is each insufficient on its own? What makes

validation particularly hard? [5 marks]
b) The traditional approach to software verification is testing. However, studies have indicated that

inspection can be more cost effective at detecting errors. Why is this? [4 marks]
c) Formal verification applies mathematical reasoning (e.g. predicate logic) to prove various

properties about a program, including correctness. What advantages and disadvantages does
formal verification have compared to testing? [4 marks]

d) In theory, formal verification could be automated if the original specification is stated completely
and precisely. Why is this hard to achieve in practice? [3 marks]

e) For many safety critical systems, a separate contractor is engaged to carry out Independent V&V,
where the V&V contractor is financially, managerially and technically independent from the
software development contractor. Why is this independence important? [4 marks]

[TURN OVER]



Page 3 of 4 Pages

QUESTION 5 (Requirements Engineering & Specification)
a) Zave defines Requirements Engineering as “the branch of software engineering concerned with

the real-world goals for, functions of, and constraints on software systems [and] the relationship
of these factors to precise specifications of software behaviour, and to their evolution over time
and across software families”. Why is Requirements Engineering considered to be the most
important part of software engineering? [4 marks]

b) Requirements should state what a system should do, without stating how it should do it. Why is
this distinction useful? [2 marks]

c) Structured Analysis proceeds by modeling the current physical system, abstracting out a model of
the current logical system, and then modeling the new logical system. What are the advantages
and disadvantages of building these three separate models? What representations are used for
each of these models? [4 marks]

d) Explain why each of the following is an important property of a software specification, and
explain how it can be achieved when writing specifications:
i) unambiguousness
ii) traceability
iii) verifiability. [6 marks]

e) Project managers sometimes regard work put into writing high quality specifications as “gold
plating”, and claim that it is unnecessary as it doesn’t contribute to producing program code.
Under what circumstances is this view sensible, and under what circumstances is it foolish? In the
latter case, how would you persuade such a manager that the specification does need to be high
quality? [4 marks]

QUESTION 6 (Software maintenance and evolution)
a) Why is software maintenance difficult? Why is it necessary? [4 marks]
b) In his paper on the laws of software evolution, Lehman introduced three types of software:

i) S-type (specifiable), where the problem to be solved can be stated precisely and is
independent of the real world,

ii) P-type (problem-solving) where the software is required to solve some real world problem
that cannot be stated precisely;

iii) E-type (embedded) where the software is to be embedded in the world.
Give an example of each type of software. Why is change intrinsic to P-type and E-type software
but not to S-type? [6 marks]

c) Why does software tend to increase in complexity as it evolves? [2 marks]
d) Software maintenance activities can be classified as corrective (fixing errors), adaptive

(responding to change) and perfective (improving the original software). Why is this distinction
useful? How would you expect the proportion of time spent on each activity to change as the
software ages? [4 marks]

e) The company you work for has traditionally kept its software maintenance teams separate from
development teams. It now wants to move to a mission orientation where a single team will be
responsible for the development and maintenance of each software product. What advantages
should your company expect from the re-organisation, and what problems might it encounter?

[4 marks]

[TURN OVER]



Page 4 of 4 Pages

QUESTION 7 (Software Measurement)
a) DeMarco states that “you cannot control what you cannot measure”. What does this mean for

software project managers? [2 marks]
b) A metric is a measurable characteristic of software, and a model is a mathematical relationship

between metrics. Why is validity important for both metrics and models? Why is the validity of
most models used in software measurement disputed? [4 marks]

c) Software quality measurement generally starts with high level quality goals, and then identifies
metrics that can be used to indicate satisfaction of the quality goals. For each of the following
quality goals, explain why the goal is important, and identify a metric that could be used to
measure it:
i) Reliability
ii) Efficiency
iii) Usability [6 marks]

d) Describe two design metrics that can be used as predictors of software quality before the code is
written. For each metric, explain why this metric indicates satisfaction of the high level quality
goals and how it can be measured. [4 marks]

e) An internet start-up company plans to use COCOMO to estimate the cost of development of their
planned Java-based web tools. What advice would you give them about the appropriateness and
accuracy of COCOMO for these projects? [4 marks]

QUESTION 8 (Software Process Modelling)
a) Leon Osterweil published a famous paper with the title “Software Processes Are Software Too”,

in which he argued that software development processes could be modelled at a fine level of
detail, as algorithms or even programs. What are the advantages of modelling software processes
to this level of detail? What are the difficulties? [4 marks]

b) The Capability Maturity Model (CMM) rates software companies according to how well they
identify and manage their software processes. The model has five levels: Initial, Repeatable,
Defined, Managed, and Optimising. Briefly describe each of the five levels. What advantages are
there for a company to move up to the top level? [6 marks]

c) Why is process improvement unlikely to occur unless an organisation defines and manages its
processes? [2 marks]

d) What notations would you use to define your software development process? What are the
advantages and disadvantages of these notations? [4 marks]

e) The company you work for is considering instituting a company wide software process modelling
effort, and plans to set up a Software Engineering Process Group to take responsibility for this
effort. What advice would you give to this group to help ensure its success? [4 marks]

[LAST PAGE!]


