
Testing Software

Diane Horton

Department of Computer Science

University of Toronto

July 1999

1 Introduction

Suppose I have written a method called maximum() that reads an unknown number of integers and

prints the largest one. Let's say I've shown you many test runs (summarized in the table below)

and the method works correctly on all of them. Would you then believe that the method works?

Input Output Correct?

3 16 4 32 9 32 yes

9 32 4 16 3 32 yes

22 32 59 17 88 1 88 yes

1 88 17 59 32 22 88 yes

1 3 5 7 9 1 3 5 7 9 yes

7 5 3 1 9 7 5 3 1 9 yes

9 6 7 11 5 11 yes

5 11 7 6 9 11 yes

561 13 1024 79 86 222 97 1024 yes

97 222 86 79 1024 13 561 1024 yes

One would think that ten test cases is plenty for such a trivial method. The problem is, they are

not well chosen cases. It is easy to write a method that handles all ten, but fails in situations such

as these:

� A very short list (i.e., of length 1, 2 or 3).

� An empty list (i.e., of length 0).

In fact, it's also easy to forget, as we did, to specify the method's behaviour in this sort of

\boundary" case.

� A list where the maximum element is the �rst or last element.

� A list where the maximum element is negative.

All ten tests cover essentially the same situation: a list of moderate length, containing all positive

integers, where the maximum is somewhere in the middle.

c Diane L. Horton 1999

1

2 Choosing Test Cases

When you test a method, your goal is to con�rm that it works not only on the particular cases

that you tested, but on all possible cases. Even for our trivial little maximum-�nder, the number

of possible inputs is far too great for you to test each one. (Think about it!)

Consider a Venn diagram, where each element of the set is a possible input sequence to the

method. Suppose we are testing a method to which there are millions of possible input sequences.

We'll only draw a few of them here. Ones on which the method has been tested are boxed:

If the boxed test cases are chosen seemingly at random, there is absolutely no reason to believe

that the method would work correctly on the millions of cases that were not tested.

If there are too many cases to test individually, and testing a random subset of them is uncon-

vincing, what can we do? The solution is to be systematic: to (1) carve up all the possible inputs

into appropriate categories:

and then (2) pick a representative test case from each one.

If a category is well chosen, it will be reasonable to conclude that because the method works correctly

on one representative test case from that category, it works on all cases within that category. For

2

example, if the maximum() method handles any list of length 1, it is quite likely that it handles all

lists of length 1. And if the categories completely cover the set of possible inputs, then you have

constructed a convincing argument that the code works on all possible inputs. (Still, it is only an

argument, and can only increase our con�dence in the code. Unless we actually test every possible

input, which is impractical for non-trivial code, testing cannot prove that there are no errors.)

This leaves an important question: How does one choose \appropriate" categories? Here are

some principles to guide you:

Identify relevant properties of the input and systematically vary them.

In the case of the maximum-�nder, relevant properties of the input include the size of the list, the

position of the maximum, the existence of negative and positive values, the existence of duplicates,

and the ordering of values within the list. We can vary these as follows:

� the size of the list: 0, 1, 2, 3, larger.

� the position of the maximum: at the very beginning, at the very end, and somewhere in the

middle.

� existence of negative and positive values: lists with all positive values, all negative values

(and hence a maximum that is negative), and mixed values.

� existence of duplicates: lists with no duplicates, lists with some which are the maximum, lists

with some that are not, and lists that contain just one value repeated.

� ordering within the list: lists in ascending order, lists in descending order, and lists that are

in no particular order.

Include boundary values for each feature.

These are values that are valid, but are at the boundary of what is valid. It is very common

for code to work on \typical" cases, but to fail on some boundary cases, so pay special attention

to them. For example, when varying the size of the list, it is important to include the smallest

possible list (size 0) and some that are near that size; when varying the location of the maximum,

it is important to consider cases where the maximum is at either extreme end.

Make sure every line of code is executed.

Over all the test cases, every line of code should be executed at least once. For a very large program,

it is di�cult to verify that you have achieved 100% \coverage", so there are now tools that will

automatically check coverage. If you do not have access to such a tool, you should still think about

coverage: After designing your test cases, inspect the code, looking for \branches" that the test

cases don't cover. (Every if-statement de�nes branches which may or may not be taken when the

code is executed.) For each such branch, devise a test case that covers it and add that case to your

suite of tests. If it is not possible to make the program take that branch, then you have identi�ed

a piece of code that needs to be removed.

3

Play \Devil's Advocate".

You probably feel proud of your code and want it to work. But when testing, you must be the

enemy of your code, so to speak. When you design test cases, your goal should be to make

the program fail, not to show that it works. Try to think of the most perverse cases | the ones

your program is most likely to mess up. If it passes this kind of tough scrutiny then you can feel

more con�dent that your program works.

It is di�cult to be this tough on your own code. Even more importantly, it is hard to step away

from the very mistaken assumptions that caused you to write buggy code in the �rst place. For

example, if you didn't consider that all your input might be negative when writing a maximum()

method, you aren't likely to think of that situation later when testing it, and so you may miss a

potential bug. Because of these problems, in industrial projects the author of a program is usually

not the person who tests it.

Design Your Testing Early

If you design your testing early, perhaps even before you write the code, the exercise of thinking

through cases systematically will make you aware of situations that you may not otherwise think

of, such as all negative inputs to a maximum() method. This can help you avoid bugs before they

happen.

3 Breaking Down the Problem

The example we've used so far is rather simple. A maximum-�nder method is very small, and

requires only one method, perhaps with a few small helper methods. Testing is more complicated

when the program is of a reasonable size.

You have learned, when programming, to break down a large problem into smaller pieces (classes

and methods, for example). This turns one mammoth problem into many small and manageable

problems that can be tackled independently. The same lesson can be applied to testing.

Rather than test the entire program at once, test its components �rst. This is called unit

testing. Once the units have been tested, they can be combined and tested in larger and larger

groups, building up to testing the entire program. This is called integration testing. In industry,

a unit might be the amount of code that a person or a team can write in a certain amount of time.

With course assignments, you are working on a much smaller scale. You might consider a unit to

be as small as an individual method.

I have argued that you should both write and test your code incrementally. In fact, you should

interleave these tasks: Write a small unit of code, then immediately test it. For example, if you've

just written a method to read in some data and build a structure to hold it, it is a very good idea to

stop and test the method before writing code that performs some operation on the data structure.

(Otherwise, you might �nd what you think is a bug in code for the operation, when in fact, the

bug was in the input method.) Once you have written and tested a unit, move on to other units

and to integration of the units, testing as you go.

You may feel reluctant to interrupt your programming in order to do testing; it can feel more

productive to complete the whole program �rst. But this is an illusion. By working incrementally,

you are likely to get to a complete, working program faster.

If we are going to test incrementally, we have to decide on the order in which to tackle it. Two

general strategies are \bottom-up" and \top-down" testing.

4

D

B

JI

A

E

LK

HGF

C

Testing order for bottom-up

testing:

� methods D, J, and L;

� methods I, and F;

� methods E, G, and K;

� methods B, and H;

� method C; and lastly

� method A.

Figure 1: A set of methods to be tested. An arrow from method A to method B indicates that A

calls B.

Bottom-up Testing with Drivers

With bottom-up testing, we begin by testing methods that don't call any other of our own methods

(although they may call Java API methods). Once they have been thoroughly tested, we can move

up to testing methods that call them, working incrementally up the call tree. For example, suppose

we were testing a program that contained the methods shown in �gure 1. The only methods that

do not call any other method are D, J, and L. These can be tested �rst, and in any order. Next,

we can test methods that call these tested methods, but nothing else: methods I, and F. Then,

we can test methods that call only D, J, L, I, and F: methods E, G, and K. Continuing in this

manner, we work our way up until we �nally can test method A. The complete test order is shown

in �gure 1.

In order to test an individual unit during bottom-up testing, we need a program that will call

the unit and show the results. This is called a driver program. A driver program doesn't have

to be fancy or general-purpose; it just needs to permit us to do the testing we want to do. There

are several strategies you can take when writing a driver:

� Go through a �xed series of tests. Such a driver is \hard coded" to do exactly the same thing

every time you run it. Figure 2 shows such a driver for a method called quickSort() that

sorts an array of integers.

� Prompt the user (the tester) for inputs to test. Such a driver is more general. It can be a

little more trouble to write than a hard-coded driver, but may be worth the trouble if you

expect to vary the testing frequently. See �gure 3 for an example.

� Randomly generate tests. See �gure 4 for an example.

5

� Systematically generate tests by looping through a sequence of possibilities.

See �gure 5 for an example. To generate combinations of possibilities, we can use nested

loops. For example, suppose we have a method that does something to an array A. Suppose

the method takes one integer parameter that must be between -A.length and +A.length)

and another integer parameter that must be between 0 and A.length-1. We can easily use a

nested loop to generate all possible combinations of values for the parameters.

Top-down Testing with Stubs

Another strategy is to work from the top down during testing. But how can we test a method

before having tested all the methods upon which it depends? This can be accomplished by using

\stubs." A stub simulates the behaviour of an untested (or even unwritten) method. There are

several ways to implement a stub. The simplest possible stub just prints a message saying that it

was called and showing the values of the parameters. Sometimes a stub has to do a little more, for

example, if the method must return a value. It may be su�cient for such a stub always return the

same, �xed value. If the stub really does need to behave di�erently in di�erent situations, we can

make it do so by asking the user (in this case, the tester), to tell it what answer to return.

Testing need not proceed strictly top-down or strictly bottom-up. A mixture of the two is also

possible.

4 Two Perspectives on Testing: Black Box and White Box Testing

When designing test cases, there are two points of view you can take. You can act as if all that

you know about the code you are testing is its interface | you know nothing about how it is

implemented. This is called black box testing, because you treat the code you're testing as a

black box, i.e., something inside of which you cannot see. Note that you can take this stance even

if you do actually know about implementation details, but you must act as if you don't. With black

box testing, all of your test cases are derived by systematic variation in the interface to the code.

The other point of view is that of an \insider" who knows the details of the code, and therefore

knows of possibly weak points to push on. This is called white box testing because it is the

opposite of black box testing. A much better name would be \clear box testing", since we are

taking about the opposite in terms of opacity (i.e., the ability to see through something).

So far, we have used both types of testing without distinguishing them. For example, the

test cases shown on page 3 for the maximum-�nder program are black-box cases, created without

knowing anything about the implementation, but attempting complete coverage is a white-box

technique. We will now work through another example in detail, devising �rst black-box test cases

and then white-box test cases for a method.

5 Example: A Set Class

Consider a class that implements a mathematical set. Figure 6 gives the interface for this class,

including speci�cations for each method. We'll design unit testing for the insert() method.

6

public static void main (String[] args) {

int[] A1 = {87, 98, 69, 54, 65, 76, 87, 89};

quickSort(A1);

for (int i=0; i<A1.length; i++)

System.out.println (A1[i]);

int[] A2 = {1, 2, 3, 4, 5, 6, 7};

quickSort(A2);

for (int i=0; i<A2.length; i++)

System.out.println (A2[i]);

}

Figure 2: A hard-coded driver. Only two test cases are shown; usually such a driver would contain

a long sequence of tests.

public static void main (String[] args) throws IOException {

BufferedReader in = new BufferedReader(

new InputStreamReader(System.in), 1);

System.out.print("How big an array do you want? ");

int size = Integer.parseInt(in.readLine());

int[] A = new int[size];

System.out.println("Please enter the array contents, one per line:");

for (int i=0; i<size; i++)

A[i] = Integer.parseInt(in.readLine());

quickSort(A);

for (int i=0; i<size; i++)

System.out.println (A[i]);

}

Figure 3: A driver that takes direction from the tester. A fancier one would put the whole thing

in a loop and stop only when the user chooses to.

7

public static void main (String[] args) {

java.util.Random generator = new java.util.Random();

// Mod by 1000 to make sure the array size isn't too huge.

int size = Math.abs(generator.nextInt()) % 1000;

int[] A = new int[size];

for (int i=0; i<size; i++)

A[i] = generator.nextInt();

quickSort(A);

for (int i=0; i<size; i++)

System.out.println (A[i]);

}

Figure 4: A driver that generates random test cases. Again, a fancier one would put the whole

thing in a loop and stop only when the user chooses to.

public static void main (String[] args) {

java.util.Random generator = new java.util.Random();

int[] A;

for (int size=0; size < 1000; size++) {

A = new int[size];

for (int i=0; i<size; i++)

A[i] = generator.nextInt();

quickSort(A);

for (int i=0; i<size; i++)

System.out.println (A[i]);

System.out.println("-------------");

}

}

Figure 5: A driver that systematically generates test cases. This driver systematically tries di�erent

sizes of array, but uses random numbers for the array contents themselves.

8

// Implements a mathematical set of Objects.

// Two Objects are considered equal only if they are the same Object.

// (It is not enough that their equals() methods returns true.)

import java.util.Enumeration;

public interface SetInterface {

// Inserts `o' into the set. Returns true if the insertion was successful

// and false if it failed (because `o' was already in the set).

public boolean insert (Object o);

// Removes `o' from the set. Returns true if the deletion was successful

// and false if it failed (because `o' was not in the set).

public boolean remove (Object o);

// Returns the number of elements currently in the set.

public int size ();

// Returns whether `o' is an element of the set.

public boolean isMember (Object o);

// Returns an enumeration of the elements of the set.

public Enumeration elements ();

// Make the set empty.

public void clear();

}

Figure 6: Interface for a set class.

9

5.1 Unit Testing of the Insert Method: Black Box Approach

Let's begin with black box testing. In order to emphasize that it is a black box, we won't reveal

the implementation details for the class.

Inputs to the code

For the maximum() method, the only input is from the user. In general, there are at least three

sources of information that can a�ect a method's behaviour: user input, parameter values, and the

state of the object, presumably represented by instance variables. (Although an instance variable

isn't really input to a method, I have called these sources of information \inputs" for lack of a

better term.) In well designed code, these may be the only things that a�ect a method. But if

other sources of information are relevant, such as a public instance variable in another class, they

should be included in the testing.

The behaviour of our insert() method is a�ected by its parameter item, as well as by the

state of the set.

Relevant properties of the inputs

The interface tells us that the item to be inserted could be any Object. Properties of an Object

include its type (for example, it could be a String, a Vector, or a simple Integer) and its content.

In this case, however, some properties of the input are not relevant: neither the type nor the

content of the item to be added to the set makes any di�erence to the behaviour of the insert()

method, except in that it may or may not be a duplicate of an item that is already in the set. So

we will vary only duplicity.

Properties of the set include its size, and the type and content of its elements. Size is likely

to be relevant to our testing, since boundary cases to do with size are a common source of bugs.

But again, nothing about the type or the content of the set's elements makes any di�erence to the

behaviour of insert(), except whether or not the new element is a duplicate.

So in summary, the relevant properties of the input are the size of the set, and whether or not

the new item is a duplicate.

Systematically varying the properties

This is quite easy to do, now that we have identi�ed the properties that need to be varied. We will

be careful to include boundary values for each property.

� size of the set: empty; 1 element; 2 elements; 3 elements; more.

If the interface acknowledged that the set could become \full" (e.g., by providing an isFull()

method, we should include a test case where we �ll the set (by inserting until isFull() returns

true) and try to insert one more item. However, the interface does not acknowledge such a

possibility or let us test for it. Still, we should be skeptical and test the method's behaviour

with a very large set.

� duplicity: an item identical to the new item exists in the set; the item itself exists in the set;

or neither is true.

Notice that we have been careful to test the two kinds of equality: the same object, and an

object with the same content.

10

Case Set content New item Relevant feature

1 empty set 5 inserting into empty set

2 5 6 set size 1; non-duplicate

3 5 5 (di�erent object) set size 1; duplicate value

4 5 5 (same object) set size 1; duplicate object

5 5 10 6 set size 2; non-duplicate

6 5 10 5 (di�erent object) set size 2; duplicate value

7 5 10 5 (same object) set size 2; duplicate object

8 5 10 15 6 set size 3; non-duplicate

9 5 10 15 5 (di�erent object) set size 3; duplicate value

10 5 10 15 5 (same object) set size 3; duplicate object

11 2 3 5 8 10 6 larger set; non-duplicate

12 2 3 5 8 10 5 (di�erent object) larger set; duplicate value

13 2 3 5 8 10 5 (same object) larger set; duplicate object

14 set with 1,000 randomly-

generated elements a non-duplicate element adding to a very large set

Figure 7: Black box test cases for the insert() method.

Test cases

Now that we have identi�ed appropriate categories, we simply have to select a test case that is

representative of each one. In general, if there are n properties, each with on the order of k values

to test, then there are k
n combinations. This can be far too many to test individually. If so,

you should focus on combinations that involve border cases, while still thoroughly testing all the

interesting values of each individual property.

In our case, we don't have to worry about the exponential number of combinations because

there are only two properties to vary, with just �ve and three values to test respectively. In total,

there are 15 combinations, so we can try them all.

One decision remaining is what type of Objects to put in the set and to use for the new item.

Since we have argued that the type of each of these is irrelevant, we can choose to use any type

of Objects in our test cases. To make things as simple as possible, we will use Integer for all

Objects.

Figure 7 shows a set of test cases that meet our requirements. Note that set contents are always

listed here in sorted order for the convenience of the reader; they may or may not be stored in that

order by the Set class.

When running these test cases, we will have to con�rm that the set has the correct contents

after each call to insert(). This can be done by calling elements() to return the contents of the

set, iterating through them, and printing each one.

At this point, we have 14 test cases. Why not 15? Two of the 14 combinations are not possible:

you cannot attempt to insert a duplicate value or duplicate object into an empty set. So this leaves

13 cases. To this we have added one last cases involving a very large set.

Fourteen seems like plenty of test cases for one simple method. But we are not done!

11

5.2 Unit Testing the Insert Method: White Box Approach

In order to perform white box testing, we have to be able to \see inside the box". That is, we must

know the implementation details of the code, in this case the Set class.

Assume that the set is stored in a sorted array so that searches, required for methods isMember(),

insert(), and remove(), can be done quickly using binary search. The array begins at size 100.

If it ever becomes full and another item needs to be inserted, a new array is allocated, double

the current size, and all the elements are copied over to it starting from position zero. A good

implementation would (1) allow the client code to choose the initial set capacity, and (2) shrink

the array if it ever becomes too sparse, but our implementation doesn't have these features.

Now that we know these implementation details, we can do some testing that is more informed.

If we knew even more, such as if we had access to the code, we might be able to come up with

more new and relevant cases, but even with this limited information, a number of new cases will

be needed.

New Relevant Categories

Because the data structure is a sorted array, we should consider where in the array the new item

will go, or will be found if it already exists in the set. So we have a new property of the input to

the code to vary: the insertion/match location. Relevant values are: at the front, the back, and

somewhere in the middle.

Because we know that binary search will be used to identify the location in which to insert, we

can think of particular situations that might cause problems for binary search either when the new

item is a duplicate (and is therefore found by binary search) or when the item is not a duplicate

and needs to be inserted:

� Odd and even sizes.

These should be tried because it's possible to make a mistake around how the division in half

is handled, especially when there is no exact middle element, as is the case in an even-sized

list.

� Sets with exactly one or two items.

There may be a bug in how the binary search gets initialized, causing it to fail on these very

small lists. Note that these are not new cases | we already chose them as relevant when we

designed the black box test cases. We have simply identi�ed another reason why they are

relevant.

� Search that stops at the exact middle spot, just to the left of it, and just to the right of it.

(The search may stop because it �nds that the new item already exists at this location, or

because it �nds that the new item needs to be inserted at this location.)

Experience tells me that these cases can cause problems.

None of these cases involve a new property of the input; instead they involve new values of properties

that we had already identi�ed as relevant.

Lastly, because we know that the array size will be doubled if ever the array is going to overow,

we'll want to try some cases around this special situation. We should check insertions that take

the set near the threshold, to the threshold, and just over it.

12

Case Set content New item Relevant feature

15 2 4 6 8 10 12 14 1 odd size; inserting at front

16 2 4 6 8 10 12 14 15 odd size; inserting at back

17 2 4 6 8 10 12 14 7 odd size; inserting to left of middle

18 2 4 6 8 10 12 14 9 odd size; inserting to right of middle

19 2 4 6 8 10 12 14 2 (same object) odd size; duplicate at front

20 2 4 6 8 10 12 14 10 (same object) odd size; duplicate at back

21 2 4 6 8 10 12 14 8 (same object) odd size; duplicate at middle

22 2 4 6 8 10 12 14 6 (same object) odd size; duplicate to left of middle

23 2 4 6 8 10 12 14 10 (same object) odd size; duplicate to right of middle

24 10 20 30 40 50 60 9 even size; inserting at front

25 10 20 30 40 50 60 61 even size; inserting at back

26 10 20 30 40 50 60 35 even size; inserting at middle

27 10 20 30 40 50 60 10 (same object) even size; duplicate at front

28 10 20 30 40 50 60 60 (same object) even size; duplicate at back

29 10 20 30 40 50 60 30 (same object) even size; duplicate to left of middle

30 10 20 30 40 50 60 40 (same object) even size; duplicate to right of middle

31 integers 1{98 inclusive 99 nearly full array

32 integers 1{99 inclusive 100 full array

33 integers 1{100 inclusive 101 array overows and must double

34 integers 1-200 inclusive 201 array overows and doubles again

Figure 8: White box test cases for the insert() method.

New Test Cases

Figure 8 shows additional test cases that cover the new categories that we have identi�ed.

6 Presenting your Testing

You now know how to design a systematic and thorough set of test cases. This is often called a

\test suite". In order to convince someone else that your program works, however, you will have

to present your testing in a convincing fashion.

Annotated Test Output

The output from your test runs for the complete set of cases that you devised may be overwhelming

in volume. In the pages and pages of output, there are key things to notice, and you will save the

reader a lot of time by pointing them out. The simplest way to do this is to use a highlighter to

highlight things on a printout and a pen to explain them. For example, on the output for test case

27, you might highlight the single 10 in the output and say \one 10; duplicate not inserted."

See �gure 9 for an example of how hand-annotated test output might look. Notice that the set

produced by one test case is usually not the set required for the next one. As a result, the driver

program must keep creating new sets to test subsequent cases. This is inconvenient, and can be

avoided to a degree by thinking about the driver when designing the test cases. For example, if

13

test case 5 involved inserting into a set containing the values 5 and 6 (which would still satisfy our

requirement of inserting into a two-element set), then we could run this test immediately after test

2, when we have just created a set with these values in it.

A more sophisticated way to annotate test output is to give your driver the ability to recognize

comments in the test input �les, indicated by a special symbol such as %. These comments would

be \echoed" in the output, thereby avoiding the need to handwrite them on the printout.

Testing Strategy

Even with 34 test cases for a simple thing like set insertion, the reader may still not believe that

because your program worked on all of your test cases, it works on any possible example you could

give it. The way to be convincing, of course, is to present the strategy behind your testing. It is,

after all, what convinces you yourself. The simplest way to to explain your strategy is with tables

like those above, plus a few extra remarks.

You should also cross-reference your output to the cases listed in your tables. If your driver is

hard-coded, you can have it print out the case numbers as we did in �gure 9. If not, you can hand

write them on your printout.

7 More About Testing

This document has presented some of the most basic ideas behind good testing. There is, of course,

more to learn. For example, after a piece of software has been completed and is in use, changes are

often required to �x bugs, add new features, and so on. How does one test the changed software?

What strategy can be used to avoid re-doing every test case? Another issue is performance testing,

which is done to assess how much of some resource (such as time, or memory space) a program

consumes. Here again, one must choose appropriate test cases, but now the cases concern resource

use rather than correctness.

The software engineering textbooks listed below address some of these more advanced testing

issues.

References

Jalote, Pankaj, An Integrated Approach to Software Engineering, Springer-Verlag, 1997. See chapter

9.

Peeger, Shari Lawrence, Software Engineering: Theory and Practice, Prentice Hall, 1998. See

chapters 7 and 8.

Pressman, Roger S. , Software Engineering: A Practioner's Approach, third edition, McGraw-Hill,

1992. See chapters 18 and 19.

14

Case 1

Set contents before insert: empty I will add highlighting and hand-written

Inserting: 5 annotations on the final version.

Set contents after insert: 5

Case 2

Set contents before insert: 5

Inserting: 6

Set contents after insert: 5 6

Case 3

Set contents before insert: 5

Inserting: 5 (different object)

Set contents after insert: 5 5

Case 4

Set contents before insert: 5

Inserting: 5 (same object)

Set contents after insert: 5

Case 5

Set contents before insert: 5 10

Inserting: 6

Set contents after insert: 5 6 10

Case 6

Set contents before insert: 5 10

Inserting: 5 (different object)

Set contents after insert: 5 5 10

Case 7

Set contents before insert: 5 10

Inserting: 5 (same object)

Set contents after insert: 5 10

Figure 9: Annotated output from the �rst set of test cases for our insert()method. This output is

from a hard-coded test driver, hence there is no user input. Notice that extra blanks were printed

to align the integer values into a column for ease of reading. Small things like this make a big

di�erence to the reader.

15

