
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 17:
Formal Modeling Methods

➜ Formal Modeling Techniques
� Definition of FM
�Why use FM?

➜ Program Specification vs. Reqts Modeling

➜ Example Formal Methods:
� RSML
� SCR
� RML
� Telos
� Albert II

➜ Tips on formal modeling

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

What are Formal Methods?
➜ Broad View (Leveson)

� application of discrete mathematics to software engineering
� involves modeling and analysis
� with an underlying mathematically-precise notation

➜ Narrow View (Wing)
� Use of a formal language

� a set of strings over some well-defined alphabet, with rules for distinguishing 
which strings belong to the language

� Formal reasoning about formulae in the language
� E.g. formal proofs: use axioms and proof rules to demonstrate that some formula 

is in the language

➜ For requirements modeling…
� A notation is formal if:

� …it comes with a formal set of rules which define its syntax and semantics.
� …the rules can be used to analyse expressions to determine if they are 

syntactically well-formed or to prove properties about them.

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Formal Methods in Software Engineering

Why formalize?
�Removes ambiguity and improves precision
�To verify that the requirements have 

been met
�To reason about the requirements/designs

� Properties can be checked 
automatically

�Test for consistency, explore 
consequences, etc.

�To animate/execute specifications
�Helps with visualization and validation

�…because we have to formalize eventually 
anyway
�Need to bridge from the informal 

world to a formal machine domain

Why formalize?
�Removes ambiguity and improves precision
�To verify that the requirements have 

been met
�To reason about the requirements/designs

� Properties can be checked 
automatically

�Test for consistency, explore 
consequences, etc.

�To animate/execute specifications
�Helps with visualization and validation

�…because we have to formalize eventually 
anyway
�Need to bridge from the informal 

world to a formal machine domain

Why people don’t formalize!
�Formal Methods tend to be lower level 

than other techniques
� They include too much detail

�Formal Methods concentrate on 
consistent, correct models
� …most of the time your models are 

inconsistent, incorrect, incomplete…
�People get confused about which tools 

are appropriate:
� specification of program behaviour

vs. modeling of requirements
� formal methods advocates get too 

attached to one tool!
�Formal methods require more effort

� ...and the payoff is deferred

Why people don’t formalize!
�Formal Methods tend to be lower level 

than other techniques
� They include too much detail

�Formal Methods concentrate on 
consistent, correct models
� …most of the time your models are 

inconsistent, incorrect, incomplete…
�People get confused about which tools 

are appropriate:
� specification of program behaviour

vs. modeling of requirements
� formal methods advocates get too 

attached to one tool!
�Formal methods require more effort

� ...and the payoff is deferred

➜ What to formalize?
�models of requirements knowledge (so we can reason about them)
� specifications of requirements (so we can document them precisely)
� Specifications of program design (so we can verify correctness)

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Varieties of formal analysis
➜ Consistency analysis and typechecking

� “Is the formal model well-formed?”
� Assumes “well-formedness” of the model corresponds to something useful…

➜ Validation:
� Animate the model on small examples
� Formal challenges:

� “if the model is correct then the following property should hold...”
� ‘what if’ questions:

� reasoning about the consequences of particular requirements;
� reasoning about the effect of possible changes

➜ Predicting behavior
� State exploration (E.g. through model checking)
� Checking application properties:

� “will the system ever do the following...”

➜ Verifying design refinement
� “does the design meet the requirements?”



5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Three traditions …
Formal Specification Languages

�Grew out of work on program verification
�Spawned many general purpose specification languages

�Good for specifying the behaviour of program units
�Key technologies: Type checking, Theorem proving

Reactive System Modelling
�Formalizes dynamic models of system behaviour
�Good for reactive systems (e.g. real-time, 

embedded control systems)
� can reason about safety, liveness, performance(?)

�Key technologies: Consistency checking, Model checking

Formal Conceptual Modelling
�For capturing real-world knowledge in RE
�Focuses on modelling domain entities, activities, 

agents, assertions, goals,…
� use first order predicate logic as the underlying formalism

�Key technologies: inference engines, default reasoning, 
KBS-shells

Applicable to Requirements
� Capture key requirements 

concepts
Examples: Reqts Apprentice, 
RML, Telos, Albert II, …

Applicable to Requirements
� Capture key requirements 

concepts
Examples: Reqts Apprentice, 
RML, Telos, Albert II, …

Applicable to Requirements
� Languages developed 

specifically for RE 
Examples: Statecharts, RSML, 
Parnas-tables, SCR, …

Applicable to Requirements
� Languages developed 

specifically for RE 
Examples: Statecharts, RSML, 
Parnas-tables, SCR, …

Applicable to program design
� closely tied to program 

semantics
Examples: Larch, Z, VDM, …

Applicable to program design
� closely tied to program 

semantics
Examples: Larch, Z, VDM, …

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

(1) Formal Specification Languages
➜ Three basic flavours:

�Operational - specification is executable abstraction of the implementation
� good for rapid prototyping
� e.g., Lisp, Prolog, Smalltalk

� State-based - views a program as a (large) data structures whose state 
can be altered by procedure calls…

� … using pre/post-conditions to specify the effect of procedures
� e.g., VDM, Z

� Algebraic - views a program as a set of abstract data structures with a set
of operations…

� … operations are defined declaratively by giving a set of axioms
� e.g., Larch, CLEAR, OBJ

➜ Developed for specifying programs
� Programs are formal, man-made objects

� … and can be modeled precisely in terms of input-output behaviour
� These languages are NOT appropriate for requirements modeling

� requirements specification program specification

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

(2) Reactive System Modelling
➜ Modeling how a system should behave

� General approach:
� Model the environment as a state machine
� Model the system as a state machine
� Model safety, liveness properties of the machine as temporal logic assertions
� Check whether the properties hold of the system interacting with its environment

➜ Examples:
� Statecharts

� Harel’s notation for modeling large systems
� Adds parallelism, decomposition and conditional transitions to STDs

� RSML
� Heimdahl & Leveson’s Requirements State Machine Language
� Adds tabular specification of complex conditions to Statecharts

� A7e approach
� Major project led by Parnas to formalize A7e aircraft requirements spec
� Uses tables to specify transition relations & outputs

� SCR
� Heitmeyer et. al. “Software Cost Reduction”
� Extends the A7e approach to include dictionaries & support tables 

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

(3) Formal Conceptual Modelling
➜ General approach

�model the world beyond software functions
� build models of humans’ knowledge/beliefs about the world
� draws on techniques from AI and Knowledge Representation

�make use of abstraction & refinement as structuring primitives

➜ Examples:
� RML - Requirements Modeling Language

� Developed by Greenspan & Mylopoulos in mid-1980s
� First major attempt to use knowledge representation techniques in RE
� Object oriented language, with classes for activities, entities and assertions
� Uses First Order Predicate Language as an underlying reasoning engine

� Telos
� Extends RML by creating a fully extensible ontology
� meta-level classes define the ontology (the basic set is built in)

� Albert II
� developed by Dubois & du Bois in the mid-1990s
� Models a set of interacting agents that perform actions that change their state
� uses an object-oriented real-time temporal logic for reasoning



9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Monitored
variables

System

Input
data
items

Output
data
items

Controlled
variables

Example: SCR

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
ACpower = Off On

Modes Events
NoFailure false true
ACFailure, HeatFailure true false
Buzzer = Off On

Modes Events
NoFailure true false
ACFailure temp > temp0 temp <= temp0
HeatFailure false waterlevel =low
Warning light = Off On

Variable Type Initial Value Units
WarningFlag boolean false -
OtherFlag boolean true
Fudgelevel enumerated one -
Waterlevel real 0.0 m
temperature real 0.0 degrees C
BlipCounter integer 0 miles
TimeNow real 100.0 sec
AirBrakeAcc real 0.0 m/sec

Constant Type Value Units
LowTemp integer 15 degrees C
HighTemp integer 23 degrees C
MaxTimeOut integer 300 millisec
ReferenceSafetyLevel safetytype low -
TempMargin integer 5 degrees C

Type BaseType Values Units
WarningLevel enumerated low,med,high -
Temperature integer -100..100 degrees C
Waterlevel integer 0..100 meters
Flag enumerated on, off -

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables
Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

Timeout @F - - - No Failure
- f f @T ACFailure

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
Heater = Off On

Modes Events
NoFailure @T(INMODE) never
SensorFail @T(reset=on) @T(INMODE)
Timeout always never
ACFailure, HeatFailure never @T(INMODE)
Warning light = Off On

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification

Input
devices

Output
devicessoftwareEnviron-

ment
Environ-

ment

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

SCR basics
➜ Modes and Mode classes

� A mode class is a finite state machine, with states called system modes
� Transitions in each mode class are triggered by events

� Complex systems are described using a number of mode classes operating in 
parallel

➜ System State
� A (system) state is defined as:

� the system is in exactly one mode from each mode class…
� …and each variable has a unique value

➜ Events
� An event occurs when any system entity changes value

� An input event occurs when an input variable changes value
� Single input assumption - only one input event can occur at once
� Notation: @T(c) means “c changed from false to true”

� A conditioned event is an event with a predicate
� @T(c) WHEN d means: “c became true when c was false and d was true”

Source: Adapted from Heitmeyer et. al. 1996.

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

➜ Mode Class Tables
� Define the set of modes (states) that the software can be in.
� A complex system will have many different modes classes

� Each mode class has a mode table showing the conditions that cause transitions 
between modes

� A mode table defines a partial function from modes and events to modes

➜ Event Tables
� An event table defines how a term or controlled variable changes in 

response to input events
� Defines a partial function from modes and events to variable values

➜ Condition Tables
� A condition table defines the value of a term or controlled variable under 

every possible condition
� Defines a total function from modes and conditions to variable values

SCR Tables
Source: Adapted from Heitmeyer et. al. 1996.

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Example: Temp Control System

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Mode transition table:

Source: Adapted from Heitmeyer et. al. 1996.



13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Failure modes

Current 
Mode 

Powered 
on 

Cold 
Heater 

Too 
Cold 

Warm 
AC 

Too 
Hot 

New 
Mode 

NoFailure t @T t - - HeatFailure 
 t - - @T t ACFailure 
HeatFailure t @F t - - NoFailure 
ACFailure t - - @F t NoFailure 

 

 

Mode transition table:

Modes
NoFailure @T(INMODE) never
ACFailure, HeatFailure never @T(INMODE)
Warning light = Off On

Event table:

Source: Adapted from Heitmeyer et. al. 1996.

14

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Using Formal Methods
➜ Selective use of Formal Methods

� Amount of formality can vary
� Need not build complete formal models

� Apply to the most critical pieces
� Apply where existing analysis techniques are weak

� Need not formally analyze every system property
� E.g. check safety properties only

� Need not apply FM in every phase of development
� E.g. use for modeling requirements, but don’t formalize the system design

� Can choose what level of abstraction (amount of detail) to model

➜ Lightweight Formal Methods
� Have become popular as a means of getting the technology transferred
� Two approaches

� Lightweight use of FMs - selectively apply FMs for partial modeling
� Lightweight FMs - new methods that allow unevaluated predicates

15

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)” Wiley, 
1999.

van Vliet gives a good introduction to formal methods in chapter 15. In particular, sections 15.1 and 
15.5 are worth reading, to give a feel for the current state of the art, and the problems that hinder 
the use of formal methods in practice. van Vliet describes a completely different set of formal modeling 
techniques from those covered in this lecture – he concentrates on methods that can be used for 
program design models, rather than requirements models.

Heitmeyer, C. L., Jeffords, R. D., & Labaw, B. G. (1996). Automated 
Consistency Checking of Requirements Specifications. ACM Transactions on 
Software Engineering and Methodology, 5(3), 231-261.

Describes SCR in detail.


