
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 21:
Process Improvement

➜ Basics of Process Modeling
� background in industrial process improvement and statistical control
� definitions

➜ Managing Process Change
� The quest for continuous process improvement
� Humphrey’s Capability Maturity Model (CMM)

➜ Towards Zero-Defect Software
� lessons from NASA’s Software Engineering Lab

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Basics of process modeling
➜ Software Process

� “the collection of related activities, events, mechanisms, tasks, and 
procedures seen as a coherent process for production of a software system 
to meet a given need”

� “Software processes are software too!”

➜ Benefits of explicitly modeling the process:
� improved communication among team
� process reuse: successes can be repeated
� process improvement: can ensure lessons learnt are incorporated after each 

project
� A software development project has two main outputs: a product and some 

experience
� The experience is often thrown away
� Individuals may remember and apply the lessons (but individuals move on, or don’t 

have the authority to change things)

➜ Underlying principle
� Fix the process not the product

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Background
➜ Industrial Engineering

� Product Inspection (1920s)
� examine intermediate and final products to detect defects

� Process Control (1960s)
� monitor defect rates to identify defective process elements & control the process

� Design Improvement (1980s)
� engineering the process and the product to minimize the potential for defects

➜ Deming and TQM
� Use statistical methods to analyze industrial production processes
� Identify causes of defects and eliminate them
� Basic principles are counter-intuitive:

� in the event of a defect (sample product out of bounds)…
� …don’t adjust the controller or you’ll make things worse.
� Instead, analyze the process and improve it

➜ Adapted to Software
�No variability among individual product instances
� All defects are design errors (no manufacturing errors)
� Process improvement principles still apply (to the design process!)

Source: Adapted from Blum, 1992, p473-479. See also van Vliet, 1999, sections 6.3 and 6.6

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

company process
database

Process Modeling & improvement
➜ Process Description

� understand and describe current 
practices

➜ Process Definition
� Prescribe a process that reflects the 

organization’s goals

➜ Process customization
� adapt the prescribed process model 

for each individual project

➜ Process enactment
� Carry out the process

�I.e. develop the software!
�collect process data

➜ Process improvement
� use lessons learnt from each project 

to improve the prescriptive model
�e.g. analyze defects to eliminate 
causes

process
description process

definition

process
custom-
ization

process
enactment

current
model

observations quality
goals

prescriptive
process model

prescriptive
process model

software
product

lessons
learnt

customized
process model

project
goals

process
improvement

PROJECT X

improved
process
model



5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Managing Process Change
➜ Humphrey’s principles:

�Major changes to software processes must start at the top
� … with senior management leadership

� Ultimately everyone must be involved
� Effective change requires a goal and knowledge of the current process

� you need a map
� you need to know where you are on the map!

� Change is continuous
� process improvement is not a one-shot effort

� Software process change will not be retained without conscious effort and 
periodic reinforcement

� Software process improvement requires investment

➜ Software Engineering Process Groups (SEPGs)
� Team of people within a company responsible for process improvement

� identifies key problems, establishes priorities, assigns resources, tracks 
progress, etc.

�Needs senior management support

Source: Adapted from Humphrey, 1989, chapter 1.

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Capability Maturity Model
Level Characteristic Key Challenges

5. Optimizing Improvement fed back
into process

Identify process indicators
“Empower” individuals

4. Managed (Quantitative)
measured process

Automatic collection of process data
Use process data to analyze and
modify the process

3. Defined
(Qualitative)

process defined and
institutionalized

Process measurement
Process analysis
Quantitative Quality Plans

2. Repeatable
(Intuitive)

process dependent on
individuals

Establish a process group
Identify a process architecture
Introduce SE methods and tools

1. Initial
Ad hoc / Chaotic

No cost estimation,
planning, management.

Project Management
Project Planning
Configuration Mgmnt, Change Control
Software Quality Assurance

Source: Adapted from Humphrey, 1989, chapter 1. See also van Vliet, 1999, section 6.6.

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Towards Zero Defect Software
➜ Cannot test-in software quality

� testing or inspection cannot improve the quality of a software product
� (by that stage it is too late)

➜ Defect removal
� Two ways to remove defects:

� fix the defects in each product (i.e patch the product)
� fix the process that leads to defects (i.e. prevent them occurring)

� The latter is cost effective as it affects all subsequent projects

➜ Defect prevention (from Humphrey)
� Programmers must evaluate their own errors
� feedback is essential for defect prevention
� there is no single cure-all for defects (must eliminate causes one by one)
� process improvement must be an integral part of the process
� process improvement takes time to learn

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

SEL Experience Factory
➜ NASA Goddard’s Software Engineering Lab (SEL)

� 20 years of measurement and evaluation of software processes
� Large baseline of experience accumulated

➜ Card’s conclusions:
� Software engineering without measurement is not engineering
� A software enterprise can collect too much data

� data collection is expensive (e.g. 5%-10% of development cost)
� need to know why you’re collecting data before you collect it

� Software science models do not appear to have practical usefulness
� Halstead’s, McCabe’s complexity models based on theory, not practical utility

� Standards that arbitrarily limit module size seem to be ill-advised
� Information hiding is more important than reducing ‘bad’ forms of coupling
� Productivity numbers are often crude and may be misleading

� because they don’t distinguish between necessary and unnecessary code
� Delivered source lines of code is not a good measure of work output
� Standards are often too comprehensive
� Unique projects can still be measured against themselves

� measurement is for controlling and improving, not for comparing projects
� Test coverage is a vital but seldom used measure
� Unreferenced variables are a good indicator of trouble
�Measurement makes productivity and quality improvement meaningful

Source: Adapted from Blum, 1992, p484-486



9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd 
Edition)” Wiley, 1999.

van Vliet gives an overview of quality management practices in chapter 6. He covers ISO 
9001 as well as CMM, and has a brief comparison with other international standards 
including IEEE Std 730, BOOTSTRAP, and SPICE. He also does a nice summary of 
quality, quoting appropriately from “Zen and the Art of Motorcycle Maintenance” (see 
lecture 12!). van Vliet also then segues into software measurement issues, including a 
cute analogy on the uses of measurement, in which we observe that black cows produce 
more milk than white cows, and use this to conclude that we should paint all the cows 
black. This summarizes very nicely what quality process management ends up doing when 
applied blindly!

Humphrey, W. S. “Managing the Software Process”. Addison-
Wesley, 1989.

This book set out many of the central ideas of process management and process 
improvement. Humphrey describes the capability maturity model (CMM) in detail. Chapter 
1 of this book (in which the CMM is first introduced) is included in the course readings. 
Of course, Humphrey was one of the main inventors of CMM, and hence he doesn’t cover 
any of it’s weaknesses, but van Vliet gives a more balanced coverage.

Blum, B. “Software Engineering: A Holistic View”. Oxford 
University Press, 1992.


