
An Algebraic Framework for Merging Incomplete and Inconsistent Views

Mehrdad Sabetzadeh Steve Easterbrook
Department of Computer Science, University of Toronto

Toronto, ON M5S 3G4, Canada.
Email: {mehrdad,sme}@cs.toronto.edu

Abstract
View merging, also called view integration, is a key prob-

lem in conceptual modeling. Large models are often con-
structed and accessed by manipulating individual views, but
it is important to be able to consolidate a set of views to
gain a unified perspective, to understand interactions be-
tween views, or to perform various types of end-to-end anal-
ysis. View merging is complicated by inconsistency of views.
Once views are merged, it is useful to be able to trace the
elements of the merged view back to their sources. In this
paper, we propose a framework for merging incomplete and
inconsistent graph-based views. We introduce a formalism,
called annotated graphs, which incorporates a systematic
annotation scheme capable of modeling incompleteness and
inconsistency as well as providing a built-in mechanism for
stakeholder traceability. We show how structure-preserving
maps can capture the relationships between disparate views
modeled as annotated graphs, and provide a general algo-
rithm for merging views with arbitrary interconnections. We
use the i∗ modeling language [31] as an example to demon-
strate how our approach can be applied to existing graph-
based modeling languages.

1 Introduction
Model management is an important, but often neglected

activity in requirements analysis and design. Large mod-
els are often constructed and accessed by manipulating par-
tial views. Keeping track of the relationships between these
views, and managing consistency as they evolve are ma-
jor challenges [13]. Individual views may represent infor-
mation from different sources, or information relevant to
different development concerns. Developers analyze these
views in various ways, and use the results of the analyses
to improve them. Hence, individual views may evolve over
time. Multiple versions of some views may be created to ex-
plore alternatives, or to respond to changing requirements.
Hence, most of the time, the current set of views are likely
to be incomplete and inconsistent.

In this paper, we address the problem of merging multi-
ple views. View merging is useful in any conceptual mod-

eling language, as a way of consolidating a set of views
to gain a unified perspective, to understand interactions be-
tween views, or to perform various types of end-to-end anal-
ysis. A number of approaches for view merging have been
proposed [4, 12, 23, 20]. However, all these approaches as-
sume the set of views are consistent prior to merging them.
This is fine if the views were carefully designed to work
together. However, for many interesting applications, the
views are not likely to be consistent a priori. Hence, ex-
isting approaches to view merging can only be used if con-
siderable effort is put into detecting and repairing inconsis-
tencies. Recent work on consistency management tools [22]
helps in this respect but does not entirely address the prob-
lem because, as we will argue, it is not possible to deter-
mine whether two views are entirely consistent until all
the decisions are taken about exactly how they are to be
merged. The intended relationships between the views must
be stated precisely.

Our approach to view merging is based on the observa-
tion that in exploratory modeling, one can never be entirely
sure how concepts expressed in different views should re-
late to one another. Each attempt to merge a set of views
can be seen as a hypothesis for how to put them together, in
which choices have to be made over which concepts over-
lap, and how the terms used in different views relate to one
another. If a particular set of choices yields an inconsis-
tent result, it may be because we misunderstood the nature
of the relationships between the views, or because there is
a real disagreement between the views over either the con-
cepts themselves, or how they are best represented. In any
of these cases, it is better to perform the merge and analyze
the resulting inconsistencies, rather than restrict the avail-
able merge choices.

In [26], we proposed category theory as a theoretical
basis for representing structural mappings between views
that contain syntactic inconsistencies. The paper proposed a
systematic scheme for annotating view elements with labels
denoting the amount of knowledge available about them.
Relationships between views were expressed using homo-
morphisms that respect constraints on the annotations. View

merging was achieved by colimit computation in an appro-
priate category.

In this paper, we demonstrate how those ideas can be
used as a framework for model management in Require-
ments Engineering, and to support the exploratory view
merging process outlined above. We add two crucial ele-
ments: the ability to use typing information as a constraint
on how views can be interconnected, and the ability to trace
the elements of the merged view back to a contributing
stakeholder, even when views are repeatedly elaborated. We
also provide algorithms for computing the merges. To illus-
trate the power of the approach, we describe a novel appli-
cation to the early requirements modeling language i∗ [31].

A key assumption in our work is that the view merg-
ing problem can be studied independently of any particu-
lar conceptual modeling language. Our approach is to treat
the views as structured objects, and the intended relation-
ships between them as structural mappings. Merging views
w.r.t. their interrelations can then be described using basic
categorical concepts. This treatment offers both scalability
to arbitrary numbers of views, and adaptability to different
conceptual modeling languages.

2 Example
To motivate the paper, consider the following view merg-

ing problem. A requirements analyst, Sam, is developing
a goal model for a meeting scheduler [29], based on inter-
views with two stakeholders, Bob and Mary. To ensure
he adequately captures both contributions, Sam first mod-
els each stakeholder’s view separately, using the i∗ nota-
tion [31]. He then merges the views to study how well their
goals fit together.

Figures 1(a) and 1(b) show the initial views of Mary and
Bob. At first sight, there appears to be no overlap, as Mary
and Bob use different terminology. However, Sam sus-
pects there are some straight-forward relationships. Sched-

ule meeting in Mary’s view is probably the same task as Plan

meeting in Bob’s. Mary’s Available dates be obtained may be
the same goal as Bob’s Responses be gathered. Sam also
thinks it makes sense to treat Mary’s Email requests to par-

ticipants and Bob’s Send request letters as alternative ways of
satisfying an unstated goal, Meeting requests be sent. Bob’s
Consolidate results task appears to make sense as a subtask of
Mary’s Agreeable slot be found goal. Finally, in the light of
the comparison between the views, Bob’s positive contribu-
tion from Send request letters to the Efficient soft-goal looks
doubtful, although the Efficient soft-goal itself seems to be
important.

For a problem of this size, Sam would likely just draw
his version of the merged views, with a result such as Fig-
ure 1(c), and show this to Bob and Mary for validation. This
manual merge process has a number of drawbacks:
• There is no separation between hypothesizing a rela-

tionship between the original views, and generating a

meeting
Schedule

be obtained
Available dates Agreeable

slot be found
Email requests
to participants

Mary

Efficient Plan
meeting

Send request letters results
Consolidate

be gathered
Responses

Bob

meeting
Schedule

Agreeable
slot be found

Available dates
be obtained

Consolidate
results

Meeting requests
be sent

by email
Send requestsSend requests

by snail mail

Efficient

Merged View

+

(a) (b)

(c)

Figure 1. Motivating example

merged version based on that relationship. Hence, it
is hard for Sam to test out alternative hypotheses, and
it will be very hard for Bob and Mary to check Sam’s
assumptions individually.

• In a manual merge, Sam will naturally tend to repair
inconsistencies implicitly. Hence, we lose the oppor-
tunities to analyze inconsistencies that arise with a par-
ticular choice of merge. Previous work has suggested
analysis of inconsistency is a powerful means of un-
covering conceptual disagreements [10].

• We have lost the stakeholders’ original vocabularies. If
it is important to capture the stakeholders’ own vocab-
ularies in the individual views, then it must be equally
important to keep track of how those terms get adapted
into the merged view.

• We have also lost the ability to trace conceptual con-
tributions. Such traceability may become important if
we repeatedly merge and evolve views over a period of
time. If we later want to change the priority (or credi-
bility!) attached to a particular stakeholder’s contribu-
tions, we have no way of discovering how that stake-
holder’s view was incorporated into the model.

The framework we describe in this paper addresses all these
problems.

3 View Merging as an Abstract Operation
The view merging framework proposed in this paper is

based on a category-theoretic concept called colimit [1]. A
category [1] is a collection of objects together with a col-
lection of mappings, known as morphisms, between them.
Each morphism expresses an admissible way to intercon-
nect a pair of objects, showing how the structure of one ob-
ject potentially maps onto the structure of another.

A hypothesis about how a group of objects are related
is captured by an interconnection diagram. An intercon-
nection diagram is given by a set of objects of a category
and a subset of all possible morphisms between them1. The

1The notion of interconnection diagram in category theory is more general
than this (cf. e.g. [1]), but the extra generality is unnecessary here.

• •

• • •

• • •

...................................
...
.........
...

...................................
...
.........
...

..

........

........

........

..............

............
........
........
........
..............
............

........

........

........

..............

............

(a)

•
• •

• •
•...

...

...................................
...
.........
...

...................................
...
.........
...

....................
.....................................

.........................
............

(b)

Figure 2. Examples of interconnection patterns

colimit of an interconnection diagram is a new object com-
bining the objects in the diagram w.r.t. their relationships as
declared by the morphisms in the diagram. The intuition be-
hind colimits is that they put structures together with noth-
ing essentially new added, and nothing left over [15]. This
principle works irrespective of the exact nature of objects
and morphisms.

If we wish to merge a set of views, we first need to know
how they are interconnected. One of the simplest kinds of
interconnection diagrams is three-way merge, used when
we have two views A and B, along with a third view C
that describes just their overlap:

C

A B

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..............................

f
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..................
............

g

In the above interconnection diagram, two morphisms f
and g specify how the common part C is represented in each
of A and B. The colimit of this diagram is a new view, P ,
expressing the union of A and B, such that their overlap, C,
is included only once.

In practice, interconnection diagrams often have more
complex patterns than that of three-way merge. Figure 2
shows two examples used later in this paper: 2(a) is used
for capturing the relationships between the i∗ meta-model
fragments in Figure 7, and 2(b) is used for capturing the
relationships between the views in Figure 9.

It can be shown that each of the merge algorithms
sketched in this paper corresponds to colimit computation
in an appropriate category given by the respective class of
objects and morphisms. Further details about the correspon-
dence between colimits and the algorithms given herein can
be found in a technical report [27] where the mathematical
underpinnings of our work have been documented.

4 Interconnecting and Merging Graphs
In our framework, we assume that the underlying syn-

tactic structure of each view can be treated as a graph. This
section introduces graphs, and describes how they can be
interconnected and merged. Further, it explains how graphs
can be equipped with a typing mechanism. The merge al-
gorithm for graphs is built upon that for sets; therefore, we
begin with a discussion of how sets can be merged.

4.1 Merging Sets
A system of interconnected sets is given by an inter-

connection diagram whose objects are sets and whose mor-

SET-MERGE (S1, . . . , Sn, f1, . . . , fk):

� Let U be an initially discrete graph with node-set S1 � . . . � Sn;� For every function fi (1 ≤ i ≤ k):
� For every element a in the domain of fi:

� Add to U an undirected edge between the elements
corresponding to a and fi(a);

� Let P be the set of the connected components of U ;� Return P as the result of the merge operation.

Figure 3. Algorithm for merging sets

phisms are (total) functions. Rather than treating functions
as general mapping rules between arbitrary sets, we con-
sider each function to be a mapping with a unique domain
and a unique codomain. Each function can be thought of as
an embedding: each element of the domain set is mapped to
a corresponding element in the codomain set. For example,
in a three-way merge, the morphisms would show how the
set C is embedded in each of A and B.

To describe the algorithm for merging sets, we need
to introduce the concept of disjoint union: The disjoint
union of a given family of sets S1, S2, . . . , Sn, denoted
S1 � S2 � . . . � Sn, is (isomorphic to) the following:
S1 × {1} ∪ S2 × {2} ∪ . . . ∪ Sn × {n}. For concise-
ness, we construct the disjoint union by subscripting the
elements of each given set with the name of the set and
then taking the union. For example, if S1 = {x, y} and
S2 = {x, t}, we write S1 � S2 as {xS1 , yS1 , xS2 , tS2} in-
stead of {(x, 1), (y, 1), (x, 2), (t, 2)}.

To merge a system of interconnected sets, we start with
the disjoint union as the largest possible merged set, and
refine it by grouping together elements that get unified by
the interconnections. To identify which elements should be
unified, we construct a unification graph2 U induced on the
elements of the disjoint union by the interconnections; and
then, combine the elements that fall in the same connected
component of U . Figure 3 shows the merge algorithm for an
interconnection diagram whose objects are sets S1, . . . , Sn

and whose morphisms are functions f1, . . . , fk.

Figure 4 shows an example of three-way merge for sets:
4(a) shows the interconnection diagram; 4(b) shows the in-
duced unification graph and its connected components; and
4(c) shows the merged set. The example shows that simply
taking the union of two sets A and B might not be the right
way to merge them as this may cause name-clashes (e.g. ac-
cording to the interconnections, the y elements in A and B
are not the same although they share the same name), or du-
plicates for equivalent but distinctly-named elements (e.g.
according to the interconnections, w in A and t in B are the
same despite having distinct names).

2A unification graph is merely a representation of a reflexive binary relation
and is used to better illustrate the set merging algorithm. Unification graphs
have nothing to do with directed graphs introduced later in the paper.

(b)

(c)

(a)

g

{z, w}

{x, y, t}{x, y, w}

C =

A = B =

f

xA yA yB

zC

wC

wA

P =
{{xA, yB, zC}, {yA}, {wA, tB, wC}, {xB}

}

tBxB

Figure 4. Three-way merge example for sets

Name Mapping
To assign a name to each element of the merged set in Fig-
ure 4, we combined the names of all the elements in A, B,
and C that are mapped to it. For example, “{xA, yB , zC}”
indicates an element that represents x of A, y of B, and z of
C. A better way to name the elements of the merged set is
assigning naming priorities to the input sets. For example,
in three-way merge, it makes sense to give priority to the el-
ement names in the connector, C, and write the merged set
in our example as P = {zC , yA, wC , xB}. Since there is no
danger of name-clashes between the merged set elements in
this particular example, we may choose to drop the element
subscripts and write P = {z, y, w, x}.

This naming convention is of no theoretical significance;
but it provides a natural solution to the name mapping prob-
lem. Generally speaking, we can assume that the choice of
names in connector objects, i.e. objects solely used to de-
scribe the relationships between other objects, has a higher
priority in determining the element names in the merged ob-
ject. We will use this convention in the rest of this paper.

4.2 Graphs and Graph Merging
The notion of graph as introduced below is a specific

kind of directed graph used in algebraic approaches to
graph-based modeling and transformation [11], and has
been successfully applied to capture various graphical for-
malisms including UML, Entity-Relationship Diagrams,
and Petri Nets [17].

Definition 4.1 (graph) A (directed) graph is a tuple
G = (N,E, src, tgt) where N is a set of nodes, E is a set
of edges, and src, tgt : E → N are functions respectively
giving the source and the target of each edge.

To interconnect graphs, a notion of morphism needs to
be defined. A natural choice of morphism between graphs
is homomorphism – a structure-preserving map describing
how a graph is embedded into another:

Definition 4.2 (homomorphism) Let G = (N,E, src, tgt)
and G′ = (N ′, E′, src′, tgt′) be graphs. A (graph)
homomorphism h : G → G′ is a pair of functions
〈hnode : N → N ′, hedge : E → E′〉 such that for all
edges e ∈ E, if hedge maps e to e′ then hnode respectively
maps the source and the target of e to the source and
the target of e′; that is: src′(hedge(e)) = hnode(src(e))

e3

e2

n1 n3n2

x1 x3

x2

B

P

f
g

p1

p2

e1

e3 n3

e2

p2

x3

δA δB

u1

u2

v1

u1
v1 u2

C

A

Figure 5. Three-way merge example for graphs

and tgt′(hedge(e)) = hnode(tgt(e)). We call hnode the
node-map function, and hedge the edge-map function of h.

A system of interconnected graphs is given by an
interconnection diagram whose objects are graphs and
whose morphisms are homomorphisms. Merging is done
component-wise for nodes and edges. For a graph intercon-
nection diagram with objects G1, . . . , Gn and morphisms
h1, . . . , hk, the merged object P is computed as follows:
The node-set (resp. edge-set) of P is the result of merg-
ing the node-sets (resp. edge-sets) of G1, . . . , Gn w.r.t. the
node-map (resp. edge-map) functions of h1, . . . , hk.

To determine the source (resp. target) of each edge e
in the edge-set of the merged graph P , we pick, among
G1, . . . , Gn, some graph Gi that has an edge q which is
represented by e. Let s (resp. t) denote the source (resp.
target) of q in Gi; and let s′ (resp. t′) denote the node that
represents s (resp. t) in the node-set of P . We set the source
(resp. target) of e in P to s′ (resp. t′). Notice that an edge
in the merged graph may represent edges from several input
graphs. In a category-theoretic setting, it can be shown that
the source and the target of each edge in the merged graph
are uniquely determined irrespective of which Gi we pick.

Figure 5 shows an example of three-way merge for
graphs. In the figure, each homomorphism has been visu-
alized by a set of directed dashed lines. In addition to the
homomorphisms of the interconnection diagram, i.e. f and
g, we have shown the homomorphisms δA and δB specify-
ing how A and B are represented in P . The homomorphism
from C to P is implied and has not been shown.

Enforcement of Types
Graph-based modeling languages typically have typed
nodes and edges. The definitions of graph and homomor-
phism given earlier do not support types; therefore, we need
to extend them for typed graphs. We can then restrict the
admissible mappings to those that preserve types.

Interface1 Class1 Class2

ClassInterface
implements

extends extends

Class1 Class2

(b)(a)

Interface1

M

t

G

Figure 6. Example of typed graphs

In [7], a powerful typing mechanism for graphs has been
proposed using the relation between the models and the
meta-model for the language. Assuming that the meta-
model for the language of interest is given by a graph M,
every model is described by a pair 〈G, t : G → M〉 where
G is a graph and t is a homomorphism, called the typing
map, assigning a type to every element in G. Notice that
a typing map is a homomorphism, offering more structure
than an arbitrary pair of functions assigning types to nodes
and edges. A typed homomorphism h : 〈G, t〉 → 〈G′, t′〉 is
simply a homomorphism h : G → G′ that preserves types,
i.e. t′(h(x)) = t(x) for every element x in G. This typ-
ing mechanism is illustrated in Figure 6: 6(a) shows a Java
class diagram in UML notation and 6(b) shows how it can
be represented using a typed graph. The graph M in 6(b) is
the extends–implements fragment of the meta-model for
Java class diagrams.

The meta-model for a graph-based language can be much
more complex than that of Figure 6. Figure 7 shows some
fragments of the i∗ meta-model extracted from the visual
syntax description of i∗’s successor GRL [16]. Instead of
showing the whole meta-model in one graph, we have bro-
ken it into a number of views, each of which represents a
particular type of relationship (means-ends, decomposition,
etc.). Our graph merging framework allows us to describe
the meta-model without having to show it monolithically:
the i∗ meta-model, Mi∗ , is the result of merging the inter-
connection diagram in Figure 7. To describe the relations
between the meta-model fragments, a number of connec-
tor graphs (shaded gray) have been used. Each morphism
(shown by a thick solid line) is a homomorphism giving
the obvious mapping. Notice that the connector graphs
are discrete (i.e. do not have any edges) as no two meta-
model fragments share common edges of the same type.
The ∧- and ∨-contribution structures in i∗ convey a rela-
tionship between a group of edges. To capture this, we in-
troduced helper nodes (shown as small rectangular boxes)
in the meta-model to group edges that should be related by
∧ or ∨. Structures conveying relationships between a com-
bination of nodes and edges can be modeled similarly.

The merge operation for typed graphs is the same as that
for untyped graphs. The only additional step required is
assigning types to the elements of the merged graph: each
element in the merged graph inherits its type from the ele-
ments it represents. In a category-theoretic setting, it can be

Task Goal

Goal
Soft Resource

Task

Goal Resource

Actor

Resource
Goal
Soft

Task Goal
Goal
Soft

Task

Goal
Soft

Task

ResourceGoal

Task GoalTask

Goal
Soft Resource

Task

Goal
Soft

Contributions

Contributions

Dependency

Means−Ends
Decomposition

∧∨

+−

− +

+•

+•

∨, ∧

+, −,
+•

Figure 7. Some meta-model fragments of i∗

proven that every element of the merged graph is assigned
a unique type in this way and that a typing map can be es-
tablished from the merged graph to the meta-model.

5 Merging Requirements Views
The framework discussed in the previous section pro-

vides sufficient machinery for merging views that are free
from incompleteness and inconsistency. However, as we ar-
gued earlier, for most interesting applications that involve
multiple stakeholders, the views are unlikely to be either
conclusive or consistent. Therefore, it is crucial to be able
to tolerate incompleteness and inconsistency. In this sec-
tion, we show how incompleteness and inconsistency can
be modeled by an appropriate choice of annotation for view
elements. Using the motivating example in Section 2, we
demonstrate how incomplete and inconsistent views can be
described, interconnected, and merged. We propose an an-
notation scheme which is capable of keeping track of the
contributions of individual stakeholders.

5.1 Annotated Views
Consider the i∗ views in Figure 1. To consolidate Mary’s

and Bob’s views, we need to find their overlaps and, in do-
ing so, we may need to introduce new elements (e.g. Meeting

requests be sent) to properly describe the relationships be-
tween the two views. In addition, we need to capture any
changes in our beliefs about the views as they evolve dur-
ing the analysis. For example, we need to capture the de-

!

✘ ✔

�

�
��

�
��

�
��

�
��

Figure 8. Variant of Belnap’s knowledge order

cision that the contribution link from Sent request letters to
Efficient in Bob’s view is deemed ill-conceived as a result of
the comparison with Mary’s view.

While the classical framework of the previous section
is capable of describing the correspondences between the
views, it provides no means to express the stakeholders’ be-
liefs about the fitness of view elements, and the possible
ways in which these beliefs can evolve. Consequently, we
cannot describe how sure a stakeholder is about each of the
decisions he makes. We will also need to express incon-
sistencies that arise due to stakeholders’ conflicting beliefs
about the structure or the contents of views.

To model stakeholders’ beliefs, we attach to each view
element an annotation denoting the degree of knowledge
available about the element. We formalize knowledge de-
grees using knowledge orders. A knowledge order is a
partially ordered set [8] specifying the different levels of
knowledge that can be associated to view elements, and the
possible ways in which this knowledge can grow. The idea
of knowledge orders was first introduced by Belnap [2], and
later generalized by Ginsberg [14].

One of the simplest and arguably the most useful knowl-
edge orders is Belnap’s four-valued knowledge order [2].
The knowledge order K shown in Figure 8 is a variant of
this: assigning ! to an element means that the element has
been proposed but it is not known if the element is indeed
well-conceived; ✘ means that the element is known to be ill-
conceived and hence repudiated; ✔ means that the element
is known to be well-conceived and hence affirmed; and �
means there is disagreement as to whether the element is
well-conceived, i.e. the element is disputed.

An upward move in a knowledge order denotes a growth
in the amount of knowledge, i.e. an evolution of specificity.
In K, the value ! denotes uncertainty; ✘ and ✔ denote the
conclusive amounts of knowledge; and � denotes an incon-
sistency, i.e. too much knowledge – we can infer something
is both ill-conceived and well-conceived.

To augment graph-based views with the above-described
annotation scheme, the definitions of graph and homomor-
phism are extended as follows. Let K be a knowledge order:

Definition 5.1 (annotated graph) A K-annotated graph
G is a graph each of whose nodes and edges has been anno-
tated with an element drawn from K.

Definition 5.2 (annotation-respecting homomorphism)
Let G and G′ be K-annotated graphs. A K-respecting
homomorphism h : G → G′ is a homomorphism subject

to the following condition: For every element (i.e. node or
edge) x in G, the image of x under h has an annotation
which is larger than or equal to the annotation of x.

The condition in Definition 5.2 ensures that knowledge is
preserved as we traverse a morphism between annotated
views. For example, if we have already decided an element
in view C is affirmed, it cannot be embedded in another
view such that it is reduced to just proposed, or is changed
to a value not comparable to affirmed (i.e. repudiated).

For a fixed knowledge order K, the merge operation over
an interconnection diagram whose objects G1, . . . ,Gn are
K-annotated graphs and whose morphisms h1, . . . ,hk are
K-respecting homomorphisms, yields a merged object P
computed as follows: First, disregard the annotations of
G1, . . . ,Gn and merge the resulting graphs w.r.t. h1, . . . ,hk

to get a graph P . Then, to construct P, attach an annotation
to every element x in P by taking the least upper bound [8]
of the annotations of all the elements that x represents.

Intuitively, the least upper bound of a set of knowledge
degrees S ⊆ K is the least specific knowledge degree that
refines (i.e. is more specific than) all the members of S. To
ensure that the least upper bound exists for any subset of K,
we assume K to be a complete lattice [8]. The knowledge
order K in Figure 8 is an example of a complete lattice.

As an example, suppose the graphs in Figure 5 were
annotated with K in such a way that the homomorphisms
f and g satisfied the condition in Definition 5.2. Assum-
ing that the nodes u1 of C, x1 of A, n1 of B are respec-
tively annotated with !, ✔, and ✘, the annotation for the
node u1 of P , which represents the aforementioned three
nodes, is calculated by taking the least upper bound of the
set S = {!, ✔, ✘} resulting in the value �.

Incorporating types into annotated graphs is independent
of the annotations and is done in exactly the same manner
as described in Section 4. In [27], we provide a complete
version of the definitions for typed annotated graphs.

5.2 Example
We can now demonstrate how to merge the i∗ views of

Figure 1. We assume views are typed using the i∗ meta-
model Mi∗ (cf. Section 4), and will use K (Figure 8) for
annotating view elements. We therefore express relation-
ships between views by (Mi∗ -typed) K-respecting homo-
morphisms. Figure 9 depicts one way to express the rela-
tionships between the views in Figures 1(a) and 1(b). For
convenience, we treat ‘proposed’ (!) as a default annotation
for all nodes and edges, and only show annotations for the
remaining values. For example, some edges in the revised
versions of Bob’s and Mary’s views are annotated with ✘ to
indicate they are repudiated.

The interconnections in Figure 9 were arrived at as fol-
lows. First, Sam creates a connector view “Connector I” to
identify synonymous elements in Bob’s and Mary’s views.

Plan
meeting

Send request letters Responses
be gathered results

Consolidate

Efficient

+

Mary
Bob

Email requests
to participants be obtained

Available dates Agreeable
slot be found

meeting
Schedule

Connector I

Connector II

be obtained
Available dates Agreeable

slot be found

meeting
Schedule

Meeting requests
be sent

by email
Send requests

Mary Revised Bob Revised

Efficient Plan
meeting

Responses
be gathered

results
Consolidate

Agreeable
slot be found

Meeting requests
be sent

Send requests
by snail mail

+

meeting
Schedule

Available dates
be obtained

Agreeable
slot be found

meeting
Schedule

Meeting requests
be sent

✘

✘
✘

✘

Figure 9. Interconnecting the views

To build this connector, Sam merely needs to declare which
nodes in the two views are equivalent. Because i∗ does
not allow parallel edges of the same type between any pair
of nodes, the edge interconnections are identified automat-
ically once the node interconnections are declared. For
example, when Mary’s Schedule meeting and Available dates

be obtained are respectively unified with Bob’s Plan meeting

and Responses be gathered, the decomposition links between
them in the two views should also be unified.

Next, Sam elaborates each of Bob’s and Mary’s views to
obtain “Mary Revised” and “Bob Revised”. In these views,
Sam has repudiated the elements he wants to replace, and
proposed additional elements that he needs to complete the
merge. Sam could, of course, affirm all the remaining el-
ements of the original views, but he preferred not to do
so because the models are in very early stages of elicita-
tion. Finally, Sam identifies the common parts between the
newly-added elements in the revised views, using another
connector view, “Connector II”.

With these interconnections, the views in Figure 9 can
be automatically merged, to obtain the view shown in Fig-
ure 10. To name the elements of the merged view priority
has been given to Sam’s choice of names. For presentation,

Meeting requests
be sent

Consolidate
results

meeting
Schedule

by email
Send requestsSend requests

by snail mail

Efficient

Agreeable
slot be found

Available dates
be obtained

Merged View

+
✘

✘

✘ ✘

Figure 10. The merged view

we may want to mask the elements annotated with ✘. This
would result in the view shown in Figure 1(c).

In the above scenario, we treated the original elements
of Mary’s and Bob’s views as being at the proposed level,
allowing Sam to freely make further decisions about any of
the corresponding elements in the revised views. At any
time, Mary or Bob may wish to insist upon or change their
minds about any elements in their views. They can do this
by elaborating their original views, affirming (or repudiat-
ing) some elements. In this case, we simply add the new
elaborated views to the interconnection diagram of Figure 9,
with the appropriate mappings from Mary’s or Bob’s orig-
inal views. Such mappings are valid as long as the amount
of knowledge does not decrease along morphisms. When
we recompute the merge, the new annotations may result in
disagreements. For example, if Mary affirms an element x
in her view and Bob repudiates an element y in his, but x
and y were found to be the same element by the intercon-
nections, it would be annotated with � in the merged view.

5.3 Support for Stakeholder Traceability

Direct use of K for annotating view elements causes
two problems: firstly, every input view can include the per-
spective of only a single stakeholder. This is because our
knowledge-ordering labels do not indicate whose knowl-
edge – we have to assume all annotations within a view rep-
resent a single stakeholder. Secondly, it is not possible to
distinguish the contributions of individual stakeholders in
the merged view.

To provide a means for stakeholder traceability, we in-
troduce a more elaborate annotation scheme which allows
multiple stakeholders to annotate the same view: Rather
than annotating view elements with single annotations, we
attach an annotation-set to each element. Each annotation
in the annotation-set has a qualifier denoting the stakeholder
whose belief is captured by that annotation.

To ensure that the annotation-set Xe attached to a view
element e evolves sanely along a morphism h, the following
condition must hold: Every stakeholder who has an anno-
tation in Xe must have an annotation in the annotation-set
of e’s image under h, and this annotation must be at least
as specific as that in Xe. Notice that this condition does

Connector

Agreeable
slot be found

Mary + Revisions

be obtained
Available dates

meeting
Schedule

Meeting requests
be sent

by email
Send requests

Agreeable
slot be found

Bob + Revisions

Responses
be gathered

Agreeable
slot be found

Send requests
by snail mail

Meeting requests
be sent

Efficient

results
Consolidate

Plan
meeting

+

meeting
Schedule

Meeting requests
be sent be obtained

Available dates

B:!;S:✘

B:!;S:✘

∅

∅

∅∅ ∅
∅∅

M:!

M:!

M:!

M:!

M:!

M:!;S:✘S:!

S:!

S:!

M:!

S:!

S:!

S:!

S:!

S:!

B:!

B:!

B:!

B:!
B:!

B:!

S:!

B:!;S:✘

Figure 11. View interconnections

Meeting requests
be sent

Consolidate
results

meeting
Schedule

by email
Send requestsSend requests

by snail mail

Agreeable
slot be found

Efficient

Merged View

Available dates
be obtained

+

B:!;S:✘

M:!;S:!

M:!;S:!

M:!;B:!

M:!;B:!

B:!;S:✘

B:!;S:✘

M:!;B:!

B:!

B:! M:!

S:! S:!

S:!

S:!
M:!;S:✘

B:!

S:!

Figure 12. Merged view with detailed annotations

not prevent h from introducing annotations for stakehold-
ers who do not already have an annotation in Xe – what is
required is that the evolution of already-existing annotations
along h must respect the knowledge order.

Sam may now revise the original views of Bob and Mary
directly because the annotations can keep track of the con-
tributions of individual stakeholders. The new system of in-
terconnected views is shown in Figure 11. We use a concise
notation to represent the annotation-set for each element.
For example, M:!;B:! means that both Mary and Bob pro-
posed the element; B:!;S:✘ means Bob proposed the ele-
ment and Sam repudiated it. Note that in the “Connector”
view in Figure 11, the elements have no stakeholder anno-
tations, indicated using ∅. If we were interested in tracking
the revisions Sam makes to Bob’s and Mary’s vocabularies,
we would need to use the same interconnection pattern as
that in Figure 9, but the view elements would be annotated
with annotation-sets instead of single knowledge degrees.

Merging the interconnected views in Figure 11 yields the
view shown in Figure 12. The annotation-set for each view
element e in the figure is computed by first unioning the
stakeholders that have contributed to the elements repre-
sented by e; and then, for every stakeholder s in the union,

taking the least upper bound of s’s contributions to these el-
ements. In [27], we provide a lattice-theoretic characteriza-
tion of the computation of annotation-sets using the concept
of annotated powerset lattices.

The annotation for each element of the merged view in
Figure 12 reflects the decisions made about the element by
the involved stakeholders. Taking the least upper bound of
the annotations in the annotation-set attached to each ele-
ment of the view results in the value annotating the corre-
sponding element in Figure 10.

Although not elaborated here due to limited space, our
arguments about stakeholder traceability easily extend to
other kinds of traceability including tracing elements back
to the views where they were originally perceived or the do-
mains to which the elements belong.

6 Discussion
In this section, we discuss some practical considerations

concerning our proposed merge framework.

6.1 Sanity Checks
The typing mechanism discussed in Section 4 can cap-

ture many classes of typing constraints that we may have to
enforce; however, it has some limitations. Most notably, it
cannot capture constraints whose articulation involves mul-
tiplicities or relies on the semantics of the modeling lan-
guage being used. In the class diagram example discussed
in Section 4, we could not express the constraint that a Java
class cannot have multiple parent classes, or that a class
cannot extend its subclasses: in both cases, a typing map
could be established even though the resulting class dia-
grams were unsound. To express the former constraint, we
would have to require that the class inheritance hierarchy be
a many-to-one relation; and to express the latter, we would
have to require that the inheritance hierarchy be acyclic.

Finding algebraic methods for enforcing multiplicities
over graphs is, to a large extent, an open problem. Some
preliminary work in this direction has been reported in [18].
Dealing with constraints that require semantics-dependent
reasoning has been found to be inherently non-generic [23],
and hence formalism-dependent.

Due to these limitations, a number of sanity checks may
be needed both on the input views, and on the merged view
to ensure their soundness w.r.t. a desired set of semantic
constraints. Even if the input views are sound w.r.t. such
constraints, this does not imply that the merged view is
sound, because the interconnections do not necessarily re-
spect such additional constraints. If the input views are
sound but the merged view is unsound, then there is a prob-
lem with how the input views have been interconnected.

Another facet to sanity checks in our framework is de-
tecting the potential anomalies caused by annotations. For
example, in Section 5, it was possible for a view to have a
non-repudiated edge with a repudiated end. In such a case,

we would be left with dangling edges if we mask repudiated
elements. The detection of such anomalies depends on the
interpretation of the annotations being used.

6.2 Identification of Interconnections
Our focus in this paper was devising a framework for de-

scribing the relationships between incomplete and inconsis-
tent views and merging them once the interconnections are
specified. In the examples of Section 5, the interconnections
were identified manually by an analyst. The natural ques-
tion to ask now is to what extent we can automate the role
that the analyst plays in establishing the interconnections.
The answer to this question has a significant impact on how
our framework scales to realistically large problems.

To our knowledge, little work has been done in Re-
quirements Engineering on automating the identification of
view interconnections, even in cases where inconsistency
management has not been an issue. However, the sub-
ject has attracted considerable attention in the Database
community for exploring relationships between schemata.
There, the identification of interconnections is referred to as
schema matching [24]. Unfortunately, the existing schema
matching approaches are largely ad-hoc and are intertwined
with the particular semantic concerns of ER diagrams. We
are performing a number of case-studies on some popu-
lar graph-based formalisms including conceptual modeling
languages such as i∗ and (the declaration-level graphical
syntax of) KAOS [30], state-machines, and UML to inves-
tigate how schema matching techniques can be generalized
to graph-based structures other than ER diagrams.

6.3 Beyond Equality Relationships
To have a flexible view exploration process, we may

need to express certain kinds of non-equality relationships
between view elements. A notable example of such re-
lationships is similarity stating that two or more elements
are similar in some respects but not equivalent. Expressing
non-equality relationships can be made possible by extend-
ing the formalism of interest with new modeling constructs.
ER diagrams, for example, have been extended with a spe-
cial notation for denoting similarities between schema el-
ements [23]. Incorporating these relationships into merge
scenarios is straight-forward. For example, in Figure 9,
we could elect to introduce a similarity node instead of the
Meeting request be sent goal node to state that Send request by

email and Send request by snail mail are conceptually similar
without providing details about the nature of the similarity.

6.4 Tool Support
We have implemented a proof-of-concept Java tool,

called iVuBlender, for merging incomplete and inconsistent
views. A brief description of the tool can be found in a
demonstration paper [25] appearing in this conference pro-
ceedings.

7 Related Work
Inconsistency management has become an important

topic in Requirements Engineering due to its central role in
model management. A number of approaches to inconsis-
tency management have been proposed, in general based on
the success of the ViewPoints framework [13, 10, 22]. The
main questions in this work center on appropriate notations
for expressing consistency rules, and automated support for
resolving inconsistencies. In much of this work, view merg-
ing is treated as an entirely separate problem, because of the
desire to maintain viewpoints as loosely coupled distributed
objects [13].

The use of multi-valued logics for merging incomplete
and inconsistent views was first proposed in [9]. Our work
at that time focused primarily on support for automated rea-
soning in the presence of inconsistency, and we developed
a multi-valued model checker [5]. The central idea in this
work was that merged state-machine models might contain
inconsistencies, and a multi-valued model checker could be
used to determine which properties are affected by the in-
consistencies.

Schema merging [4, 23, 20] is an important operation in
database design for combining disparate schemata, and has
been identified as one of the core activities in metadata man-
agement [3, 19]. Our proposed framework extends the state-
of-the-art on schema merging in several respects: firstly, the
existing schema merging approaches only support the three-
way merge pattern whereas our framework can handle arbi-
trary interconnection patterns; secondly, our framework can
explicitly model inconsistencies and allows for the deferral
of their resolution. This is in contrast to the above-cited
work where inconsistencies are not tolerated and need to be
resolved as soon as discovered. Thirdly, our framework is
parameterized by a meta-model and can hence be applied
to various modeling formalisms; but, schema merging is, to
a great extent, tailored to ER diagrams or similar schema
modeling notations.

The closest work to ours in the area of Requirements En-
gineering is the merging framework of [12]. In this work,
views are described by graph transformation systems and
colimits are used to merge them. However, the work cannot
handle inconsistent views. Furthermore, the notion of view
proposed therein is geared toward software specification ar-
tifacts and does not provide a suitable means for describing
conceptual models.

Recently, a framework has been proposed for merging
partial behavioral models [28]. There, stakeholders’ mod-
els are described by partial state transition systems and are
merged based on the process-algebraic refinement relations
between them. The work supports incompleteness and can
also detect inconsistencies; however, the merge operation
fails when the models are inconsistent. Another differ-
ence between our approach and the work is that they do

not explicitly describe view correspondences and rely on
bi-similarity relations to give the relationships between the
states of different views. This can make it difficult for re-
quirements analysts to guide the merge process as they can-
not directly hypothesize the merge alternatives.

Annotated graphs bear similarity to fuzzy graphs [21].
The work on fuzzy graphs is focused on the analysis of iso-
lated models using graph-theoretic techniques, whereas in
our work, the focus is on describing the structural relation-
ships between models using algebraic techniques.

8 Conclusions and Future Work
We have proposed a flexible and mathematically rig-

orous framework for merging incomplete and inconsistent
views. Our merge framework is general and can be applied
to a variety of graphical modeling languages. In this paper,
we presented the core algorithms for computing merges,
showed how the framework can handle typing constraints,
and how our annotation scheme can be used to trace con-
tributions in the merged view back to their sources. We
have implemented the algorithms described in the paper,
and used the implementation to merge views in a number
of different notations.

An advantage of our framework is the explicit identifica-
tion of interconnections between views prior to the merge
operation rather than relying on naming conventions to give
the desired unification. We believe this offers a powerful
tool for exploring inconsistency during exploratory model-
ing, as it allows an analyst to hypothesize possible intercon-
nections for a set of views, compute the resulting merged
views, and trace between the source views and the merged
views to analyze these results.

The work reported here can be continued in many direc-
tions. Automating the identification of potential intercon-
nections between views may be an important step for apply-
ing the work to large scale conceptual modeling. Another
interesting possibility is whether our framework can be used
for relating the behaviors of models. The interconnections
used in our approach are based on homomorphisms and the
fact that homomorphisms have been employed in various
abstraction frameworks [6] for relating behaviors of models
poses many interesting questions as to what logical prop-
erties can be preserved when models are merged. Adding
support for hierarchical structures is yet another issue that
can be studied. We also plan to develop a more usable ver-
sion of the tool to investigate how well it supports collabo-
rative conceptual modeling, and especially stakeholder ne-
gotiation during requirements analysis.

Acknowledgments. We thank John Mylopoulos, Renée
Miller, and Linda Liu for helpful discussions. We thank the
members of the Formal Methods, Database, and EarlyRE
groups at the Uof T for their insightful comments. Financial
support was provided by NSERC, MITACS, and BUL.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Les
Publications CRM Montréal, third edition, 1999.

[2] N. Belnap. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logic, pages 5–37. Reidel, 1977.

[3] P. Bernstein. Applying model management to classical meta data
problems. In CIDR, pages 209–220, 2003.

[4] P. Buneman et al. Theoretical aspects of schema merging. In EDBT,
pages 152–167, 1992.

[5] M. Chechik et al. Multi-valued symbolic model-checking. TOSEM,
12(4):371–408, 2003.

[6] E. Clarke et al. Model checking and abstraction. TOPLAS, 19(2),
1994.

[7] A. Corradini et al. Graph processes. Fundamenta Informaticae,
26(3–4):241–265, 1996.

[8] B. Davey and H. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, second edition, 2002.

[9] S. Easterbrook and M. Chechik. A framework for multi-valued rea-
soning over inconsistent viewpoints. In ICSE, pages 411–420, 2001.

[10] S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency
management. Software Eng. J., 11:31–43, 1996.

[11] H. Ehrig and G. Taentzer. Computing by graph transformation, a
survey and annotated bibliography. BEATCS, 59:182–226, 1996.

[12] H. Ehrig et al. A combined reference model- and view-based ap-
proach to system specification. Intl. J. of Software Eng. and Knowl-
edge Eng., 7(4):457–477, 1997.

[13] A. Finkelstein et al. Inconsistency handling in multi-perspective
specifications. TSE, 20:569–578, 1994.

[14] M. Ginsberg. Bilattices and modal operators. In TARK, pages 273–
287, 1990.

[15] J. Goguen. A categorical manifesto. Mathematical Structures in
Computer Science, 1:49–67, 1991.

[16] The GRL ontology. http://www.cs.toronto.edu/km/GRL.
[17] Handbook of graph grammars and computing by graph transforma-

tion: volumes I–III. World Scientific.
[18] R. Heckel and A. Zündorf. How to specify a graph transformation

approach. In ENTCS, volume 44, 2001.
[19] S. Melnik. Generic Model Management: Concepts and Algorithms,

volume 2967 of LNCS. Springer, 2004.
[20] S. Melnik et al. Rondo: a programming platform for generic model

management. In SIGMOD, pages 193–204, 2003.
[21] J. Mordeson and P. Nair. Fuzzy Graphs and Fuzzy Hypergraphs.

Physica-Verlag, 2000.
[22] C. Nentwich et al. Flexible consistency checking. TOSEM, 12:28–

63, 2003.
[23] R. Pottinger and P. Bernstein. Merging models based on given cor-

respondences. In VLDB, pages 862–873., 2003.
[24] E. Rahm and P. Bernstein. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.
[25] M. Sabetzadeh and S. Easterbrook. iVuBlender : A tool for merging

incomplete and inconsistent views. In this proceedings.
[26] M. Sabetzadeh and S. Easterbrook. Analysis of inconsistency in

graph-based viewpoints. In ASE, pages 12–21, 2003.
[27] M. Sabetzadeh and S. Easterbrook. An algebraic framework for

merging incomplete and inconsistent views. Technical Report
CSRG-496, U. of Toronto, 2004.

[28] S. Uchitel and M. Chechik. Merging partial behavioural models. In
FSE, pages 43–52, 2004.

[29] A. van Lamsweerde et al. The meeting scheduler system – problem
statement. ftp://ftp.info.ucl.ac.be/pub/publi/92.

[30] A. van Lamsweerde et al. Goal-directed elaboration of requirements
for a meeting scheduler. In RE, pages 194–203, 1995.

[31] E. Yu. Towards modeling and reasoning support for early-phase
requirements eng. In RE, pages 226–235, 1997.

