iVuBlender: A Tool for Merging Incomplete and Inconsistent Views

Mehrdad Sabetzadeh

Steve Easterbrook

Department of Computer Science, University of Toronto, Canada
Email: {mehrdad, sme}@cs.toronto.edu

Abstract

View merging is an important activity in any conceptual
modeling language. It is often desirable to combine a set of
views to gain a unified perspective, to test hypotheses about
how views are related, or to perform various types of anal-
ysis. A major challenge for view merging is toleration of
incompleteness and inconsistency: views may be inconclu-
sive, and may have conflicts over the concepts being mod-
eled or how they are structured. Drawing on the theory de-
veloped in our earlier work [6, 5], we present a view merg-
ing tool, called iVuBlender, that allows for explicit mod-
eling of incompleteness and inconsistency and provides a
framework for interconnecting and merging incomplete and
inconsistent views.

1 Introduction

View merging is a core activity in model management.
The existing work on view merging [3, 4] assumes that
views are consistent prior to merging them. However, for
most applications that involve multiple stakeholders, views
are unlikely to be consistent a priori. Hence, considerable
effort may be needed to detect and repair inconsistencies
before computing the merges.

In [5], we proposed a framework for merging incomplete
and inconsistent graph-based views. We introduced a for-
malism, annotated graphs, which incorporates a systematic
annotation scheme capable of modeling incompleteness and
inconsistency. We use structure-preserving maps to capture
relationships between views, modeled as annotated graphs.
Using ideas from category theory, we provided a general
algorithm for merging views w.r.t. arbitrary view intercon-
nections. In this paper, we describe our implementation,
and illustrate it with a simple schema merging example.

2 Methodology

We augment views with an annotation scheme to model
incompleteness and inconsistency: we annotate each view
element to denote the degree of knowledge available about
the element. The annotations are drawn from a knowledge
order, which is a partially ordered set specifying the levels
of knowledge, and the possible ways in which this knowl-
edge can grow. A useful knowledge order is Belnap’s 4-
valued logic [2]. Figure 1 presents a variant of this, /C. La-
beling an element with ! means that the element has been

A
N/

Figure 1. The knowledge order KC

proposed but it is not known if the element is indeed well-
conceived; X means the element is ill-conceived and hence
repudiated; ¢ means the element is well-conceived and
hence affirmed; and % means there is disagreement as to
whether the element is well-conceived, i.e. the element is
disputed. An upward move in /C denotes growth in the
amount of knowledge: ! denotes inconclusiveness; X and
v denote the desirable (i.e. conclusive) amounts of knowl-
edge; and 4 denotes an inconsistency, i.e. too much knowl-
edge — we can infer something is both ill-conceived and
well-conceived.

To merge a set of views, we need to know how they are
interconnected. To express the relationships between views,
we use structural mappings. For graph-based views, a nat-
ural choice for such mappings is graph homomorphism — a
structure-preserving map describing how one graph is em-
bedded into another. To have sound embeddings, we need
to ensure that knowledge is preserved across mappings. For
example, if we have already decided an element in a view is
affirmed, it cannot then be embedded in another view such
that it is reduced to just proposed, or is changed to a value
not comparable to affirmed (i.e. repudiated).

Our view merging algorithm is based on a category-
theoretic concept called colimit [1]. Given a family of inter-
connected views, computing the colimit yields a new view
combining the given views w.r.t. their relationships as de-
clared by the mappings.

3 Implementation

We have implemented a Java tool, called iVuBlender, for
merging requirements views. The tool consists of two com-
ponents: (1) a merge library for annotated graphs; and (2) a
Swing-based front-end that allows users to graphically ex-
press their views, specify the view relationships, and com-
pute merges. We have used the merge library for merging
+* models, ER diagrams, and state-machines. Currently,
the front-end only supports ER diagrams and is restricted
to just the knowledge order in Figure 1 for annotating view
elements. For future versions, we plan to develop a larger
collection of graphical widgets to capture the visual syntax

of richer modeling formalisms such as 2*, and provide sup-
port for defining arbitrary knowledge orders.

4 Example

Figures 2 through 5 illustrate an example in which a pair
of database schemata, modelA and modelB, are merged
w.r.t. their overlaps as specified by a third schema modelC.
First, the three schemata are created. Figure 2 shows one
of these schemata (modelB). The color of each element
represents the annotation for the element: if not colored,
the element is at the proposed level; if colored blue, it is
affirmed; if colored magenta, it is repudiated; and if colored
red, it is disputed. For simplicity, we have only used the
proposed and affirmed levels in our example.

coel|
e Edit View Window Help Il

cl=]s]lo [e][4]n]e][w][@]=]a] |

DEEENEE |

erd-example | !I| modelBxml |

o=] Diagrams
-] Madels ;
D modelA |3
D modelg | :
D modelC |
o= Marphisms |

Figure 2. View delineation

In the second step, the desired mappings between the
schemata are declared. In this example, two mappings,
mapCA and mapCB, specify how the common part mod-
elcC is represented in each of mode 1A and modelB. Inter-
connections between the schemata are hypothesized using
an interconnection diagram, as shown in figure 3. To spec-
ify each mapping, the respective source and target schemata
are shown side-by-side. An element correspondence is es-
tablished by first clicking on a source schema element and
then on the corresponding target schema element. Fig-
ure 4 shows how the Employee element from modelC
is mapped to the corresponding element in modelA.

The final step is to compute the merge — a new schema
expressing the union of modelA and modelB, such that
their overlap, mode1C, is included only once. The result is
shown in Figure 5. To ensure that the computed merge has a
proper layout, a fully automatic layout algorithm is applied
to it before it is presented to the user.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Les
Publications CRM Montréal, third edition, 1999.

[2] N. Belnap. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logic, pages 5-37. Reidel, 1977.

[3] H. Ehrig et al. A combined reference model- and view-based ap-
proach to system specification. Intl. J. of Software Eng. and Knowl-
edge Eng., 7(4):457-4717, 1997.

[4] R.Pottinger and P. Bernstein. Merging models based on given corre-
spondences. In VLDB, pages 862-873., 2003.

=)

©

File

it View Window Help

¢ [#[e]s][w][m[]a]

4| modelCoxmi | mapCAxmi | pushoutxmi |

BEIC

Eall]

[erd-example
¢-[JDiagrams
[faushout
-3 Models
[modela
[mocele
[moceic
¢ I Morphisms
[mapca
[mapce

modelA mode1B

m:& %cn

modelC

Figure 3. View Interconnections

T

File Edit View Window Help

[s]=le]l2 ¢ [e]w][@]a]a]

erd-example | ¥ modelAxml | modelBxml | modelCxml | mapCAxml
o[Diagrams
¢ CIModels
[y rmodela
[y rmodeis
[y modelc
-3 Marnhisms
mapcA
[y mapce

modelCxml modelAxm|

Figure 4. Creating a mapping

S 006
Eile E w Window Help
[a]=[s][2]< [#]e]e][@][@[a]a]
[efcfola]
=3 erd-example I pushoutxmi_|” mergedxmi |
[Diagrams =
Do
-] Models
[moctela
) models
[mocelc
o [Morphisms
_n:e'né}'gme'n:r
\
“Enployee
~ T
r
/
= / : b

Figure 5. Result of the merge operation
[S] M. Sabetzadeh and S. Easterbrook. An algebraic framework for merg-
ing incomplete and inconsistent views. In this proceedings.

[6] M. Sabetzadeh and S. Easterbrook. Analysis of inconsistency in
graph-based viewpoints. In ASE, pages 12-21, 2003.

