
 1

Software Architects in Practice: Handling Requirements
Vidya Lakshminarayanan, WenQian Liu , Charles L Chen, Steve Easterbrook ,

Dewayne E Perry

Empirical Software Engineering Lab
Electrical and Computer Engineering

The University of Texas at Austin, TX
{vidya,clchen,perry}@ece.utexas.edu

Software Engineering
Department of Computer Science

University of Toronto, Canada
{wl,sme}@cs.toronto.edu

Abstract
Software architecture can be a critical factor in
software development. Understanding what soft-
ware architects do in practice is necessary to the
enterprise of providing techniques, methods,
process, tools and technologies to support the
development and use of software architecture. In
this paper, we present the results of how architects
handle requirements in practice. We then summa-
rize the key lessons learned from the study.

1 Introduction
Research in the areas of requirements engineering
and software architecture have developed inde-
pendently for more than a decade [4][7]. However,
in the last few years, a number of researchers have
begun to investigate the relationships between
requirements and architecture, and how to bridge
the gap from one to the other [1][3]. In particular,
techniques have been proposed for generating
software architectures from the requirements
[2][5][9][10]. However, there have been no stud-
ies to date on how architects currently perform
this transformation in practice.
 In this paper, we report the some of the re-
sults of a multiple case study of experienced soft-
ware architects. We take an empirically based
approach and use an interview-based case study
methodology to carry out our investigations. Case
studies are a specific empirical research method

Copyright  2006. Lakshminarayanan, Liu, Chen,
Easterbrook and Perry. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

used to gain a deep understanding of a particular
phenomenon in its real life context. As such, they
are characterized by analytical generalizations
rather than statistical generalizations; they are to
be understood in terms of analysis and compari-
son of cases, not of samples [11].
 So far, we have interviewed fourteen differ-
ent architects from different domains (such as
security, usability, product lines, etc.) in different
organizations (ranging from relatively small to
extremely large, from specific product focuses to
general system and solution providers, etc).
 The architects in this study were chosen from
software intensive organizations in two general
areas: in and near Toronto, and Texas (Austin,
Houston and Dallas). Where the subject archi-
tects are from the same companies, they either
represent different divisions (which are often the
size of medium sized companies) or represent
different kinds of architects. With a few excep-
tions, our subject architects have significant ex-
perience both in their roles as architects (4 to 15
years). Where the subjects have only a few years
experience as architects, they do have significant
experience as developers (five or more years).

In [6], we describe the full scope of our study,
and our process of defining it from its preparation
to its evidence chain and evidence trail. We also
discussed various validity issues with the then
current state of our case studies. Our main con-
cern then was the concentration of architects from
one international company. As noted above, we
have expanded the representation of architects in
terms both of companies and of domains. Thus,
we feel that the external validity of our multiple
case study has been strengthened significantly.

 2

2 Requirements
From our data, it is evident that there was a clear
consensus on what requirements are - things that
are wanted, needed, asked for, or demanded.
However, there was little consensus on how they
are handled.

2.1 Functional vs. Non-Functional
A typical distinction is that functional require-
ments specify the functions that a system must
have, while non-functional requirements describe
general constraints on the acceptable solutions,
such as performance requirements, software de-
sign constraints, software quality attributes, etc.
 Our subjects do not have a uniform opinion
about functional and non-functional requirements.
The majority of our subjects distinguish between
them. A few architects, however, suggested that
they see no real difference between functional and
non-functional requirements and each requirement
(if committed) must be accommodated in the de-
sign. For example, one subject indicated that se-
curity is neither functional nor non-functional; it
is simply a serious business and technical re-
quirement that can “make or break the deal”.
 Several subjects consider that every require-
ment has both functional and non-functional as-
pects. Depending on one’s perspective and the
problem context, one aspect may dominate the
other. In security, there are standard functional
requirements dealing with interoperability and
manageability issues: a VPN client has to imple-
ment a chosen protocol in order to communicate
with the server; a system administrator needs to
be able to safely update the access information
using scripts overnight. Also, specific require-
ments are set to prevent performance degradation:
one cannot impose more than 1/10 of a second la-
tency on the startup of a connection; or more than
3% throughput overhead due to cryptography.
 While there is some disagreement, the differ-
ences between them are more cosmetic than fun-
damental. The underlying themes of our subjects’
opinions are as follows:

• Non-functional requirements are fre-
quently used for convenience to refer to
high-level properties and abstract phe-
nomena that are desirable.

• Non-functional properties must be
(re)formulated as functional ones before
they can be satisfied.

2.2 Discovering Real Requirements
Requirements set the goals and expectations for a
system to be developed. However, a variety of
requirements problems make it difficult to pro-
duce the right system. Our subjects state that re-
quirements elicitation is difficult because multiple
stakeholders are usually involved. Each one has a
view of what is important and what needs to bee
done based on past experiences, and personal
prejudices. Requirements are often expressed in
technological terms and often reflect their per-
sonal biases and, thus, obscure the real require-
ments.. Higher level goals are often left out,
leading to partial or incorrect requirements. Our
subjects recognize this as a problem and respond
to it by participating in the elicitation process.
This helps them obtain first hand the information
to understand what the stakeholders actually need.

Sometimes architects with their experiences
and knowledge need to influence and educate the
stakeholders to broaden their focus and move in a
different direction. One of our subjects, however,
suggests that architects should communicate with
the requirements engineers instead of going
straight to the customers because of the following
reasons: 1) these engineers have the necessary
training for handling requirements and customers,
and 2) the architects’ understanding may differ
from that of the requirements engineers leading to
synchronization problems between the require-
ments and the architecture.
 Another issue is that requirements are not
always consistent. Interacting with the stake-
holders (and possibly educating them) can help to
resolve these inconsistencies. Our subjects often
rely on brainstorming in a group setting to resolve
such issues. This technique focuses on generating
as many ideas as possible. The resulting ideas are
evaluated, and the ones best suited for the stake-
holders are chosen. Unfortunately, not all incon-
sistencies can be resolved this way. Occasionally,
architects must rely on their own judgment to
resolve these inconsistencies. This tactic is risky
and not recommended but sometimes it is the only
alternative available to them.

2.3 Anticipating Changes
Changes are a very common in software devel-
opments. They can represent new requirements or
re-evaluations of existing requirements. They are
usually stated as additional functionality or an

 3

incremental problem to solve. One subject indi-
cates that in creating an architecture that can be
reused and can be adapted to changing needs,
architects must be able to see the big picture so
that resources can be better planned and critical
problems can be better addressed. He further sug-
gests that “what is going to change really is re-
lated to the domain” and trying to handle
everything without an understanding where
changes are likely to occur is a poor approach in
software engineering. One key to anticipating
changes is the understanding of business needs
and customers goals. Otherwise, it will be just a
guessing game.
 Another subject suggests that satisfying every
request from the customer may not be the right
thing to do because some requests do not fit in the
long-term direction of the industry. He believes
that the key to understanding the long-term direc-
tion of industry must involve the collaboration of
the industrial and research communities. By shar-
ing their knowledge and experience, both com-
munities can benefit.
 Professional experience is always an asset..
Typically, experienced architects will seek to re-
use information and predict possible problems and
changes. Experience helps architects to identify
potential risks, what is hard, and what are critical
issues.
 A number of subjects suggest that using good
design principles provides an indirect solution for
dealing with changes and anticipating future re-
quirements. For example: 1) the natural cohesion
found in the requirements can be used in the de-
sign to make maintenance and enhancements eas-
ier, 2) modularity can be used to minimize the
effects of changes on the entire system, and 3)
generic solutions can be used to provide reusable
and extensible frameworks.
 The benefits of anticipating changes do not
come without a price or without challenges. First,
it is a time consuming task. There may be cases
when this investment is not warranted. This is
especially true for products with shorter antici-
pated life spans and in cases where the time to
market for the first release is a dominant factor.
 Second, “disruptive technologies” (technolo-
gies that become dominant and radically change
the state of practice) provide a special challenge.
One way of dealing with this is to design the sys-
tem to be adaptable to mitigate the risk of unfore-
seeable changes.

 Third, it is always a challenge to be able to
correctly interpret requirements in the absence of
contextual information. In such cases, making
incremental changes and integrating back into the
product is appropriate. It also helps in uncovering
any hidden assumptions.
 Fourth, with a ‘middle man’ (such as market-
ing staff) filtering and interpreting the require-
ments, the real problem may not be conveyed
properly to the architects. To mitigate this prob-
lem, one subject believes that architects need to
analyze “a number of problems in aggregate”
instead of focusing on a given single instance
before committing to a solution.
 One of the ways to manage change is to lay
out a roadmap to help customers move on from
one release of the system to the next. By having a
clear plan for upgrades and changes, the problem
of dealing with multiple versions with different
configurations can be minimized or even elimi-
nated.

2.4 Managing Requirements
Software architects use a number of strategies to
manage complex and costly requirements. Under-
standing the rationale and the business problem of
the given requirements by asking the ‘why’ and
‘what’ questions is critical. Answers to these
questions provide both deeper insight into the real
problem and more options for solving them. Dur-
ing these back and forth question-and-answer
sessions, the negotiation of the requirements is
actually taking place to produce acceptable re-
quirements that can be signed off by both sides.
 Conflicts, unrealistic ‘sales promises’ and
impossible requirements must all be negotiated
with the customer. In some cases, a compromise
can be achieved, but in others, ‘no’ is the only
answer. Under such circumstances, prioritization
helps to determine which requirements are essen-
tial and which are optional. These priorities can
be based on cost/benefit analyses or specific areas
of concern to the stakeholders. There may still be
a case that there are too many requirements all
with the highest priority where an “80/20 rule”
could be applied: i.e., choose 20% of the require-
ments that cover 80% of the stakeholders’ con-
cerns.

Problem decomposition is often used to man-
age complexity. In most problems that involve
automating human activity, decomposition is
fairly straightforward because people tend to do

 4

things in uncomplicated ways.. Decomposition
helps to break down the problem into smaller
pieces and to make implementation easier. We
note, however, that the refinement and decompo-
sition methods and techniques used often depend
on the architect’s experience and domain knowl-
edge.
 Since there are no specific techniques or
methods to handle complex requirements, it is
important that the architects perform post mortem
analysis so that they can analyze their mistakes
and come up with better methods and techniques
to handle such requirements. However, such post
mortem analyses are usually not conducted well
in practice because of a lack of tool support to
trace back to the requirements.

3 Lessons Learned
Lessons learned from out subjects include:
Lesson 1 Architects need to be generalists
rather than specialists. They need to draw from a
wide range of design and domain knowledge.
Lesson 2 The distinction between functional
and non-functional requirements is not always a
concern, but both must be carefully considered
and reflected in the architecture.
Lesson 3 Change is inevitable in software de-
velopments. Therefore, anticipating changes early
can save implementation and maintenance effor
Heuristics and professional experience play a
large role in this.
Lesson 4 Requirements are often filtered by
middle men where much of the relevant contextual
information is missing. This can cause major
problems for the architect.
Lesson 5 Architects need to ensure that they
are working with reasonable, consistent require-
ments. If there are problems with the require-
ments, then they should either send the
requirements back to the requirements engineers
for rework, or they should negotiate directly with
customers. Most of our subjects favored the latter
approach.

4 Future Work
There are still lessons to be obtained from our
architects beyond what we have provided here.
We expect these to be made available in work-
shop, conference and journal publications. We

will also make available appropriately sanitized
technical reports summarizing the results of our
interviews and providing salient quotes [8].

Acknowledgements
We thank our anonymous interviewees and their
companies for their contributions. This research
is supported in part by NSF CISE Grant CCR-
0306613 and IBM CAS Fellowship. We also
thank our co-researcher Deepika Mahajan

References
[1] D. M. Berry, R. Kazman, and R. Wieringa, editors,

The Second International Software Requirements
to Architecture Workshop (STRAW’03), ICSE
2003, Portland OR.

[2] M. Brandozzi and D. E. Perry, “From Goal-
Oriented Requirements to Architectural Prescrip-
tions: The Preskiptor Process”, in [3].

[3] J. Castro and J. Kramer, editors, The First Interna-
tional Workshop on From Software Requirements
to Architecture (STRAW’01,).ICSE 2001. Toronto.

[4] D. Garlan, “Software architecture: a roadmap”,
Future of Software Engineering, ICSE 2000, Lim-
erick Ireland,.

[5] D. Jani, D. Vanderveken and D. E. Perry. “Deriv-
ing Architectural Specifications from KAOS
Specifications: A Research Case Study”, Euro-
pean Workshop on Software Architecture 2005,
Pisa Italy.

[6] W. Liu, C. L. Chen, V.Lakshminarayanan, D.E.
Perry, “A Design for Evidence-based Software
Architecture Research”, Workshop on
REBSE'2005, ICSE 2005, St. Louis.

[7] B. Nuseibeh and S. Easterbrook, “Requirements
engineering: a roadmap”, Future of Software En-
gineering, ICSE 2000, Limerick Ireland.

[8] D. E. Perry. NSF Grant CCR-0306613 Project
Web Site “Transforming Requirement Specifica-
tions into Architectural Prescriptions”,
http://www.ece.utexas.edu/
~perry/work/projects/nsf-r2a/ [29 October 2005]

[9] A. van Lamsweerde, “From System Goals to
Software Architecture”, In M. Bernardo and P. In-
verardi, editors, Formal Methods for Software Ar-
chitectures, 2003.

[10] D. Vanderveken, A. van Lamsweerde, D. E. Perry,
and C. Ponsard, “Deriving Architectural Descrip-
tions from Goal-Oriented Requirements Models”,
September 2005

[11] R. K. Yin, “Case Study Research: Design and
Methods”, 3/e. Thousand Oaks, CA: Sage Publica-
tions, 2002.

