
A Manifesto for Model Merging

Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu,
Mehrdad Sabetzadeh

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada

{gbrunet,chechik,sme,shiva,nn,mehrdad}@cs.toronto.edu

ABSTRACT
If a modeling task is distributed, it will frequently be neces-
sary to merge models developed by different team members.
Existing approaches to model merging make assumptions
about the types of model to be merged, and the nature of the
relationship between them. This makes it hard to compare
approaches. In this paper, we present a manifesto for re-
search on model merging. We propose a framework for com-
paring different approaches to merging, by treating merge as
an algebraic operator over models and model relationships.
We specify the algebraic properties of an idealized merge

operator, as well as related operators such as match, diff,
split, and slice. We then show how our framework can be
used to compare existing approaches by applying it to two of
our own research projects on model merging. We show how
this analysis permits a detailed comparison of approaches,
reveals the key features of each, and identifies weaknesses
that require further research. Most importantly, the frame-
work emphasizes the need to make explicit all assumptions
about the relationships between models, and indeed to treat
model relationships as first class objects.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]: Requirements/Specifications - methodologies.

General Terms: Documentation, Design.

Keywords: Distributed Development, Model Management,
Inconsistency.

1. INTRODUCTION
In model-based development, models are usually construct-

ed and manipulated by distributed teams, each working on
a partial view of the overall system. Global model manage-
ment involves keeping track of the relationships between the
various models, and, from time to time, combining informa-
tion from several models into a single model. We call this
model merging.

A number of factors make model merging complicated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GaMMa’06, May 22, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

The modelers may have used different vocabularies, or ap-
plied a shared vocabulary inconsistently. Models may over-
lap, in that they refer to the same concepts in the require-
ments or design of a system, but the overlapping concepts
may be presented differently in each model, and the models
may contradict one another. Models may evolve through a
number of different versions, so that merges may need to be
recomputed if the source models are updated.

The problem of model merging has been studied in many
domains: schemata of several independently developed data-
bases [2, 18, 11], static and dynamic UML models [26, 4],
web services [10], program variants [7, 16], requirements
models [21, 22], and many varieties of reactive systems [9,
25, 3, 6].

The modeling formalisms and the underlying assumptions
in these approaches differ significantly. For example, most
of these approaches require that only consistent models be
merged, implying that inconsistent models must be repaired
prior to merging [15]. However, some approaches tolerate in-
consistency, and can represent the inconsistencies explicitly
in the resulting merged model (e.g. [3, 22, 16]). In some
cases, the goal is to show differences between the models
rather than to put them together [26].

The approaches disagree on the treatment of information
not explicitly present in the model. For example, [2, 11,
6, 3] assume that omitted information is “possible” (e.g., an
equation “x = 3” does not constrain the value of y), whereas
most state-machine approaches assume that omitted infor-
mation signifies prohibited behaviours; [25] takes a hybrid
approach.

These approaches further differ in whether they handle
heterogeneous modeling notations. Most approaches to merg-
ing are intended for merging models expressed in the same
notation (e.g. merging UML Class diagrams with one an-
other [26]) Some approaches solve the problem of merg-
ing heterogeneous notations by first translating them into
an underlying unified language and only then merge them
(e.g. [4]). [6] is a notable exception which allows merging
scenarios and state machines directly.

Finally, the approaches range in the level of sophistication
in matching and identifying similar information. In software
engineering, most approaches assume that entities are the
same when they have the same name or id (or are derivatives
of entities with the same name or id); others, e.g., [21], sup-
port the use of an explicit ontology, or a thesaurus, relating
entities from each model. In the database work, schema in-
tegration approaches implement sophisticated matching al-
gorithms [19].

In this paper, we propose a unifying framework for un-
derstanding the model merging problem. Our intent is to
facilitate comparison and extension of existing approaches,
and to suggest a research agenda for future work.

Our framework is based on two observations about model
merging:

• In practice, model merging is an exploratory process,
in which the goal is to discover the exact nature of the
relationship between models, as much as to combine
them. Hence, we need to be explicit about these re-
lationships, and need to provide the modelers with a
way of stating them precisely.

• Model merging is facilitated by a number of related
operations on models – comparing models, checking
their consistency, and finding matches between them.
We can characterize each of these as algebraic opera-
tions over models and model relationships, in order to
understand their properties.

We begin the paper with a characterization of a set of
useful model management operators (Section 2). We then
describe the algebraic properties of the ideal merge operator
(Section 3). Afterwards, we show how this framework can
be used to analyze particular approaches to model merg-
ing, using two of our own projects on model merging (Sec-
tion 4). The first of these is a general approach to merging
conceptual models based on structural mappings between
them. The second is a technique for weaving state machine
models by finding a common refinement. We discuss the
merge framework in Section 5 and conclude the paper with
an outline of the future research agenda for model merging
(Section 6).

2. MODEL MANAGEMENT OPERATORS
In this section, we present a basic set of operators for

global model management, in terms of the objects they
manipulate. The basic data types in our definitions in-
clude models, relationships between models, and properties
of models. At this point, we consider arbitrary models,
but note that particular implementations of these operators
might be defined only for certain classes of model.

We begin with the merge operator:

merge : model × model × relationship → model

We assume the models to be merged are of the same type
(e.g. the same kind of UML diagram), or are of compatible
sub-types within the type hierarchy (e.g. modeling notations
derived from the same meta-model). A relationship must
specify how the models as a whole relate to one another, as
well as any specific mappings between elements within the
models, for example, any mappings between the vocabular-
ies of the models. The key idea is that there may be many
different ways of putting together an arbitrary pair of mod-
els; the relationship specifies which of these is desired. For
example, when composing behavioural models (e.g. state
machines), the behaviours might be composed in parallel,
sequentially, or as restrictions or extensions of one another.

In our past work on merging as well as in reviewing the
relevant literature, we have found a number of supporting
operations on models to be useful. For example:

match : model × model → relationship

Match is sometimes also referred to as mapping. This op-
eration is used to find commonalities between models. The
resulting relationship can be used as a basis for model merg-
ing. The result of match may be under-determined, in that
there may be many possible relationships between the mod-
els. In this case, match can be used to generate candidate re-
lationships for exploratory merging. Although not explicitly
captured in its signature, match may use information such
as common ancestors, domain constraints, vocabulary cor-
respondences, etc. for finding better candidate relationships
between models. Such information can also be exploited by
the diff operator, defined below.

diff : model × model → transformation

Where match returns a relationship, diff returns a sequence
of edit actions needed to transform one model into another.
The obvious example is the UNIX utility diff, which per-
forms this operation on text files. Note that diff is not
commutative: the transformation is from the first model to
the second. In some cases, we may only be interested in the
length of the transformation, i.e., the edit distance between
the two models.

split : model → model ×model × relationship

Split produces a partition, and can be viewed as the in-
verse operation of merge. The resulting relationship of split
can be further understood as interfaces between partitioned
models. Split produces compatible models.

slice : model × criterion → model

Slice produces a projection, or a partial view of a model,
based on a criterion. Therefore, the resulting model contains
every piece of the input model that satisfies the criterion,
and thus can be used to build aspect(s) of the input model.

Because some types of merge require the input models to
satisfy certain (behavioural and/or structural) properties,
as well as consistency, we may also need:

check-property : model × property → truth-value
is-consistent : model × model × relationship → truth-value

These operations can be used to check the models prior to
merging. Normally, one might expect these operators to re-
turn a boolean result, however, some approaches generalize
to truth values drawn from multi-valued or fuzzy logics. See
Section 4 for examples. Note that consistency checking can
only be performed with respect to an intended relationship
between two models [17].

Finally, we identify two more operators that are useful for
global model management:

patch : model × transformation → model
propagate : transformation ×model ×model×

relationship → model

Patch applies a transformation, such as that returned by
diff, to a model to generate a revised model. Propagate
takes a transformation intended for one model, and applies
a corresponding transformation to a second model, where
the two models have a defined relationship between them.
The intent is to propagate edits to related models to keep
them consistent.

3. ALGEBRAIC PROPERTIES
Having characterized merge and its related operators in

terms of the objects they manipulate, we now specify some
of the properties we might expect of these operators. For
example, does the order of merging various models matter?
Is merge monotonic? We describe the properties in algebraic
terms, and then discuss their practical utility.

In the following, m1, m2, . . . , are assumed to be models
of the same type (or compatible sub-types), and ri,j is a
relationship between mi and mj . We drop the subscripts
when the context is clear.

1. Idempotency:
merge(m1, m1,match(m1, m1)) = m1

Merging a model with itself should return the same
model, assuming that the given relationship completely
maps the model onto itself. Hence, we assume that
matching a model with itself should produce such an
identity relationship. In practice, this property may
be too strong, as we may be willing to accept a re-
sult that is isomorphic, rather than identical, to the
original.

2. Commutativity:
merge(m1, m2, r) = merge(m2, m1, r)
This simply states that, for a given relationship, it
should not matter which order the models are pre-
sented in.

3. Associativity:
merge(merge(m1, m2, r1,2), m3, r(1,2),3) =
merge(m1,merge(m2, m3, r2,3), r1,(2,3))
If the merge operation is associative, then generaliza-
tion to more than two models can be achieved merely
by repeated merges, in any order. In practice, such
a generalization is complicated by the need to specify
the relationship at each step. It may be more practical
to define a general merge operator that works for sets
of models and relationships.

4. Inverses:
split(merge(m1, m2, r)) = (m1, m2, r)
merge and split are inverses of one another.

5. Monotonicity:
m1 � m′

1 ∧ m2 � m′

2 ⇒
merge(m1, m2, r) � merge(m′

1, m
′

2, r
′)

where � is some pre-order defined over models (e.g.,
refinement and trace equivalence [12]) that is logically
characterized by the properties that are preserved by
merge. The idea here is that the merge operands m1

and m2 can be evolved independently (to m′

1 and m′

2),
such that the merge of the evolved operands is guar-
anteed to be an evolution of the original merge. In
practice, this means that the merge of the evolved
models preserves the desired properties of the origi-
nal merge. This facilitates component-based reasoning
with respect to merge.

6. Totality:
∀m1, m2 ∈ model · merge(m1, m2, r) ∈ model
This property is of particular importance, as its satis-
faction means that the merge operation is well-defined
for any pair of models, whether or not they satisfy con-
ditions such as consistency. If this property holds, it

means we can generate a merge, even for inconsistent
models. In some cases this is preferable to repairing
the inconsistency first. In particular, with tools for
reasoning in the presence of inconsistency, the merged
model can be used as a basis for exploration and ne-
gotiation.

Note that the above algebraic properties are “ideal”. Sat-
isfying a reasonable subset of these (typically as a result of
simplifying assumptions or limitations of the specific mod-
eling notation) still facilitates a useful merge operation in
practice, as we illustrate below.

4. EXAMPLES
To illustrate our global model management framework,

we instantiate it to two different domains: In Section 4.1
we show how structural models represented as entity rela-
tionship diagrams (ERDs) can be merged. In Section 4.2,
we discuss merging behavioural models described as state
machines.

A major aspect of our previous work on model merging
has been dealing with partiality and inconsistency. To cap-
ture partiality and inconsistency, we use multi-valued logics.
The different values of our logics represent different degrees
of stakeholders’ knowledge. In the examples of Sections 4.1
and 4.2, a 3-valued logic [8] is used. The truth values of
this logic are represented and interpreted differently in our
examples:

• In the ERD example, the truth-values are drawn from
the set {✔, !, ✘ }: ✔ is used when an element is conclu-
sively appropriate; ✘ is used when an element is con-
clusively inappropriate; and ! is used when an element
is proposed but is not yet known to be appropriate (or
inappropriate) for sure.

• In the state machine example, the truth-values are de-
noted by the set {t, !, f }: t is interpreted as true and
is used for elements explicitly included in a model; f
is interpreted as false and is used for elements explic-
itly excluded from a model; and ! is interpreted as
unknown and is used for elements whose value may
either be true or false.

The reason why the interpretations of the truth values
differ in our structural and behavioural examples is because
for structural models an open world semantics is implicitly
assumed. This is in contrast to behavioural models for which
a closed world semantics is typically used [20].

4.1 Merging Entity-Relationship Models
In this section, we briefly sketch out our structural merg-

ing approach described in [22] and illustrate it by walking
through a simple requirements elicitation exercise where we
consolidate requirements models originating from different
human sources. Suppose Rob and Sue are gathering the re-
quirements for a payroll database. An analyst, Jack, will
help them through the elicitation process and identification
of correspondences between their models. Stakeholders’ per-
spectives are captured by ERDs.

The first step is for Rob and Sue to describe their initial
perspectives (models Rob and Sue in Figure 1(a)). They
use the 3-valued truth set described earlier in the paper
for stating their level of confidence about each element in

Employee Departmentworks for

name namesalary

PersonCompany employed by

dob

namename

Employee

name

Rob

Sue

Connector1

C1-To-Rob C1-To-Sue

! !

(a) Interrelating the perspectives

Employee

Company

employed
by

name

name

dob

Department
works

for

name

salary

Merged View

!!

(b) The merged model

Figure 1: An example of merging ERDs.

their models. For convenience, “proposed” (!) is treated
as a default annotation for all model elements, and only
the remaining values are shown. We do not use ✘ in this
example.

Inputs. We use two main abstractions for describing a
merge: models and embeddings. A model is simply a graph-
ical representation of a set of related concepts, here ERDs.
An embedding expresses an admissible way to incorporate
a model into another. Embeddings preserve the graphical
structure of models and are described by graph homomor-
phisms. The input to the merge process is a set of models
and a set of embeddings between them.

The Merge Process. Our structural merging algorithm
is based on a category-theoretic concept called colimit [1].
Colimits provide an abstract and yet very powerful machin-
ery for merging [5]. Intuitively, computing the colimit yields
a new model combining all models w.r.t. their correspon-
dences as described by the embeddings.

Below, we illustrate colimits in our elicitation example:
Once Rob and Sue provide their models, Jack will merge
them to create a unified schema. To do the merge, Jack
needs to identify the correspondences between Sue’s and
Rob’s models: Employee in Sue’s model is likely to be the
same entity as Person in Rob’s. Consequently, the name

attribute of Employee would be the same as that of Person.
To describe these correspondences, Jack creates a new

model, Connector1 (shown in Figure 1(a)), containing only
the parts that are in common between Rob’s and Sue’s mod-
els. He then chooses appropriate names for the elements
in Connector1 and specifies how the model is embedded
into each of the stakeholders’ models using two embeddings
C1-To-Rob and C1-To-Sue. We usually refer to shared
models as connectors because they are used to describe cor-
respondences between other models. Notice that even if Rob
used the term Employee instead of Person in his model, defin-
ing a connector would still be necessary because our merge
framework does not rely on naming conventions to describe
the desired unifications – all correspondences must be iden-
tified explicitly prior to the merge operation. For the set

of interconnected models in Figure 1(a), computing the col-
imit results in a new ERD expressing the union of Rob’s
and Sue’s perspective such that their overlap, described by
Connector1, is included only once.

The result of the merge operation is shown in Figure 1(b).
For naming the elements of this model, we have assumed
that the naming choices in the connector (which happen to
favor Sue in this particular example) take precedence over
those in the stakeholders’ models.

Relationships. The way we described correspondences be-
tween two models implies a certain notion of inter-model re-
lationships: A relationship between a pair of models A and
B is a model C together with embeddings f : C → A and
g : C → B describing how C is represented in each A and
B. For example, Connector1, C1-To-Rob and C1-To-

Sue in Figure 1(a) describe a relationship between Rob’s
and Sue’s models.

The Match Operator. The output of the match oper-
ator in this approach would be a relationship as described
above. In our example, the task of identifying matches is
not automated but rather left to an analyst.

The Split Operator. split can easily be implemented in
terms of the traceability information stored in merges. The
details of our traceability framework have been described
in [23].

Check-property. We do not assume any particular se-
mantics for our structural models. check property depends
on domain semantics and is not addressed in our work.

Consistency. Our structural merges tolerate partiality and
inconsistency. A complete discussion on this subject is out
of the scope of this paper. See [22] for details.

Algebraic Properties. Idempotency, commutativity, and
associativity immediately follow when colimits are used for
merging. Our merges have inverses when proper traceabil-
ity information is stored in them [23]. If we interpret �
as model inclusion, monotonicity also holds. Embeddings
preserve syntactic constraints, so merge is total. However,

Shooting

Ready

Flash Shooting Normal Shooting

CM1
CM2 CM′

1 CM3

Shutter open

¬Shutter open

¬Focusing

Focusing

Flashing ¬Flashing

¬Shutter open

¬Focusing

¬Shutter open
¬Focusing
¬Flashing

¬Shutter open
Focusing

¬Flashing

¬Focusing ¬Focusing
Shutter open Shutter open

Ready

Flash Shooting Normal Shooting

Flashing ¬Flashing

¬Shutter open
¬Focusing
¬Flashing

¬Shutter open
Focusing
¬Flashing

¬Focusing ¬Focusing
Shutter open Shutter open

Ready

Shutter open

¬Shutter open

¬Focusing

Focusing
¬Shutter open

¬Focusing

s0

s1

s2

t0

t1

t2

(s0, t0)

(s1, t1)

(s2, t2) (s2, t3)
t3

s0

Flashing

Flashing

Flashing

!

!

!

s1

s2 Shooting

Ready

Auto-Focus
Auto-Focus

Auto-Focus
Auto-Focus

Figure 2: An example of merging state machines.

since embeddings do not necessarily preserve semantics, the
resulting merges may not be semantically sound.

Other Operators. We do not address diff, slice, patch,
and propagate.

4.2 Weaving State Machines
In this section, we give an outline of our behavioural merg-

ing approach [25, 13] and apply it to merging two variant
interpretations of the photo-taking functionality of a cam-
era.

Inputs. Each variant is described as a state machine con-
sisting of a set of states, a set of transitions between states,
and a set of variables whose values vary from state to state.
Each variable is assigned one of the three values: t, !, or f.
By convention, an atomic proposition in positive form is t,
and a negated proposition is f. Unknown propositions are
annotated by !.

The informal specification of the photo-taking functional-
ity is as follows:

To take a photo, a user needs to press the shutter
button half-way. When focus is achieved, the
shutter button can be pressed completely to take
a picture. Under low-light conditions, the built-
in flash should fire automatically.

Two possible specifications of this functionality, CM1 and
CM2, are shown in Figure 2. The goal of CM1 is to spec-
ify the focusing feature and the behaviour of the camera’s
shutter. In state s0, the shutter is closed and the focus is
not yet achieved; in s1, the focus is achieved; and in s2, the
shutter opens and a photo is taken. Model CM2 addition-
ally describes the built-in flash, which is disabled in states
t0 and t1. In t2, the camera opens its shutter and, depend-
ing on the light intensity, the flash is either fired or remains
disabled.

The Merge Process. To merge models, we first unify
their variable sets and address the resulting incompleteness
by setting missing variables to !. For example, when the set
of variables of CM1 is lifted to the unified set of variables,
we simply set the missing variable Flashing to ! in all of
the states of CM1. The result is the model CM′

1, shown in
Figure 2.

The intuition we wish to capture by behavioural merging
is that of combining partial knowledge coming from indi-
vidual models while preserving all of their agreements. The
notion of common refinement underlies this intuition as it
captures the “more complete than” relation between two in-
complete models [25, 13]. Models can have more than one
common refinement. We are always interested in the least
one. In order to compute the least common refinement,
i.e., the merge, of two state machines, we first compute a
relationship between the states of the two models. This
relationship effectively allows us to describe the correspon-
dences between two models and compute their merge. For
our example, the merge of CM1 and CM2 is CM3, shown
in Figure 2.

Relationships. In this approach a relationship is a binary
relation between the states of the input models. For exam-
ple, the relationship between CM1 and CM2 is
{(s0, t0), (s1, t1), (s2, t2), (s2, t3)}.

The Match Operator. The output of match is a relation-
ship as described above. When the least common refinement
exists, this relation is unique and can be computed automat-
ically.

Check-property. We assume our state machines have be-
havioural semantics. Our merge preserves model behaviours.
This allows us to employ model checking techniques through-
out the merge process. The usage of the check-property op-
erator in our approach is elaborated in [13]. For example,
the property “whenever focus is achieved, we can take a
picture” is formalized by the CTL formula AG(Focusing →
EXShutter open). This property holds in both CM1 and
CM2 and therefore is satisfied by the merged model CM3

as well.

Consistency. Our approach tolerates partiality and can
identify inconsistencies. We disallow merging inconsistent
models. Further details can be found in [25, 13].

Algebraic Properties. Given a relationship between a
pair of models, idempotency, commutativity, and associativ-
ity hold. Monotonicity of merges also follows if we interpret
� as a refinement relation over models. Totality does not
hold: only consistent models can be merged.

Other Operators and Properties. We do not address
diff, split, slice, patch, and propagate.

5. DISCUSSION
Our intent in this paper is to develop a framework for

comparing different approaches to model merging. Such a
framework will be useful if it provides a suitable vocabulary
for discussing the key ideas in model merging, if it reveals
key issues and assumptions in existing research projects, and
provides a rich source of suggestions for future work.

Our list of model operators in Section 2 clearly distin-
guishes the different possible operations on models, and pro-
vides a standard vocabulary. The distinctions between the
operators have already proved useful in discussing our own
work on merging. For example, we had already identified the
need to develop a match operator for our merge tools [14],
but had not explicitly considered the use of other opera-
tors, and how they would interact with merge. A model
development process might use split at some stage to divide
a large model into separate workpieces, to be evolved inde-
pendently. The relationship produced by split could then be
used either to propagate edits from one model to another,
or as the basis for an eventual re-merge. Alternatively, if
we have models that originated from different sources, we
might transfer information from one model to another by
using slice to extract an aspect from one source model, and
then match and merge to apply it to another.

A key insight gained by treating models and their opera-
tions as an algebra is the central role played by relationships,
and the key questions of how relationships are discovered
and represented. The relationships we have been using fo-
cus on mappings between model elements. In our work on
merging behavioural models, the relationship is as simple as
a list of pairs of states to be unified. In our work on merging
structural models, the relationship is an overlap (expressed
as a third model), together with information about how that
overlap is manifested in each model. In both cases, we may
have to capture differences of vocabulary, and preferences
for which vocabulary to use in the merged model.

A comparison between these different ways of represent-
ing relationships reveals more assumptions about the nature
of relationships between models. Our relationships express
overlaps – concepts that are represented in both models,
and must be unified when the models are merged. However,
this implies a broader assumption about how the models
as a whole relate to each other. In both approaches, the
models are assumed to exhibit complementarity – each de-
scribes some concepts that are ignored in the other. Such an
assumption may fit poorly with the usual semantics of the
modeling languages. For example, state machine formalisms
traditionally adopt a closed world semantics (nothing can
occur, other than the stated transitions). By declaring two
models to be complementary, we are overriding the closed
world assumption. In some cases, we may want to treat some
aspects of the models not as complementary, but rather as
contradictory. For example, in UML, if two class models
give different sets of attributes for a class that is to be uni-
fied, we may view this as a disagreement about the correct
set of attributes, rather than as a complementarity. In most
approaches to merging, the choice over whether a given re-
lationship between model elements is a contradiction or a
complementarity is implicitly determined by the model se-
mantics. It would be better to specify this explicitly, and

to consider how the stated relationship interacts with the
model semantics.

The analysis of whether specific merge operators exhibit
totality reveals a significant variability in how merge tools
check and handle assumptions on their inputs. Some merge
approaches assume no name clashes occur, or at least that
there are no homonyms in the unified vocabulary of the mod-
els to be merged. Some assume that the models contain no
contradictions. A totality of merge offers the benefit that we
can perform exploratory merges and test whether the results
are sensible, rather than sanitizing the models first.

6. CONCLUSIONS
In this paper, we argued that distributed model manage-

ment depends crucially on being able to put together models
coming from different sources, the process we referred to as
merge. We have suggested a framework for comparing dif-
ferent approaches to merging, proposed a number of merge-
related operators and discussed their desired properties. We
have also illustrated the framework on two examples.

The resulting framework leads us to a reconsideration of
modeling semantics based on how well they support dis-
tributed modeling. The intended relationship between two
partial models may be at odds with the usual semantics of
the modeling formalism. In particular few modeling lan-
guages address the notion of missing information (partial-
ity). Notable exceptions for state modeling are approaches
based on Live Sequence Charts [6], MTSs [9, 25] and partial
Kripke structures [13]).

The examples provided in this paper are homogeneous
merges: the input models and output models are all of the
same type. However, we believe our algebraic approach gen-
eralizes to heterogeneous merging, like the one advocated in
[6].

Throughout the paper, we have argued for a more ex-
plicit specification of the relationships between models dur-
ing distributed model development. Some frameworks for
global model management make use of model versioning in-
formation to capture some aspects of the relationships be-
tween models in the same version tree. The relationships we
describe in this paper go beyond versioning, to include all
shared information in multiple models. In our future work,
we intend to devote more attention to the question of how
to elicit and represent such relationships between models.

Finally, we would urge the model management community
to launch an effort to gather benchmarks for various aspects
of the merge process. The benchmarks should include some
description of the domain (what is being merged), and spe-
cific examples of models and their relationships. The gath-
ered benchmarks will help move the field forward in many
ways: (1) provide grounds for comparison between the dif-
ferent approaches to merging; (2) stress-test the tools; (3)
help to drive the research forward by improving consensus
on a shared research agenda [24].

7. REFERENCES

[1] M. Barr and C. Wells. “Category Theory for
Computing Science”. Les Publications CRM Montréal,
Montreal, Canada, 3rd edition, 1999.

[2] P. Buneman, S. Davidson, and A. Kosky. Theoretical
aspects of schema merging. In Proceedings of the 3rd

International Conference on Extending Database
Technology, pages 152–167, 1992.

[3] S. Easterbrook and M. Chechik. “A Framework for
Multi-Valued Reasoning over Inconsistent
Viewpoints”. In Proceedings of International
Conference on Software Engineering (ICSE’01), pages
411–420, 2001.

[4] A. Egyed and N. Medvidovic. “A Formal Approach to
Heterogeneous Software Modeling”. In Proceedings of
Formal Aspects of Software Engineering (FASE’00),
pages 178–192, 2000.

[5] J. Goguen. “A Categorical Manifesto”. Mathematical
Structures in Computer Science, 1(1):49–67, 1991.

[6] D. Harel, H. Kugler, and A. Pnueli. “Synthesis
Revisited: Generating Statechart Models from
Scenario-Based Requirements.”. In Formal Methods in
Software and Systems Modeling, pages 309–324, 2005.

[7] S. Horwitz, J. Prins, and T. Reps. “Integrating
Noninterfering Versions of Programs.”. ACM
Transactions on Programming Languages and
Systems, 11(3):345–387, 1989.

[8] S. C. Kleene. Introduction to Metamathematics. New
York: Van Nostrand, 1952.

[9] K. Larsen and L. Xinxin. “Equation Solving Using
Modal Transition Systems”. In Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer
Science (LICS’90), pages 108–117, 1990.

[10] N. Liu, J. C. Grundy, and J. G. Hosking. “A Visual
Language and Environment for Composing Web
Services”. In Proceedings of Automated Software
Engineering (ASE’05), pages 321–324, 2005.

[11] S. Melnik, E. Rahm, and P. Bernstein. “Rondo: a
Programming Platform for Generic Model
Management”. In SIGMOD Conference, pages
193–204, 2003.

[12] R. Milner. “Communication and Concurrency”.
Prentice-Hall, New York, 1989.

[13] S. Nejati and M. Chechik. “Let’s Agree to Disagree”.
In Proceedings of 20th IEEE International Conference
on Automated Software Engineering (ASE’05), pages
287 – 290, 2005.

[14] S. Nejati, M. Sabetzadeh, M. Chechik, and
S. Easterbrook. “Identifying and Representing
Requirements Variability in Families of Reactive
Software”, 2006. Submitted for publication.

[15] C. Nentwich, W. Emmerich, and A. Finkelstein.
“Consistency Management with Repair Actions”. In
Proc. of the 25 Int. Conference on Software
Engineering (ICSE’03), 2003.

[16] N. Niu, S. Easterbrook, and M. Sabetzadeh. “A
Category-Theoretic Approach to Syntactic Software
Merging”. In 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 197–206,
2005.

[17] B. Nuseibeh, S. Easterbrook, and A. Russo. “Making
Inconsistency Respectable in Software Development”.
The Journal of Systems and Software, 58(2):171–180,
2001.

[18] R. Pottinger and P. Bernstein. “Merging Models
Based on Given Correspondences”. In Proceedings of
29th International Conference on Very Large Data
Bases (VLDB’03), pages 862–873, 2003.

[19] E. Rahm and P. Bernstein. “A Survey of Approaches
to Automatic Schema Matching”. The VLDB Journal,
10(4):334–350, 2001.

[20] R. Reiter. “On Closed World Databases”. In Logic and
Databases, pages 119–140. Plenum Publ. Co., 1978.

[21] D. Richards. “Merging Individual Conceptual Models
of Requirements”. Requirements Engineering,
8(4):195–205, 2003.

[22] M. Sabetzadeh and S. Easterbrook. “An Algebraic
Framework for Merging Incomplete and Inconsistent
Views”. In 13th IEEE International Requirements
Engineering Conference, September 2005.

[23] M. Sabetzadeh and S. Easterbrook. “Traceability in
Viewpoint Merging: A Model Management
Perspective”. In 3rd International Workshop on
Traceability in Emerging Forms of Software
Engineering, November 2005.

[24] S. E. Sim, S. Easterbrook, and R. C. Holt. “Using
Benchmarking to Advance Research: a Challenge to
Software Engineering”. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE’03), pages 74–83, 2003.

[25] S. Uchitel and M. Chechik. “Merging Partial
Behavioural Models”. In Proceedings of 12th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 43–52, November 2004.

[26] Z. Xing and E. Stroulia. “UMLDiff: An Algorithm for
Object-Oriented Design Differencing”. In Proceedings
of 20th IEEE International Conference on Automated
Software Engineering (ASE’05), pages 54–65, 2005.

