
Engineering the Software for Understanding Climate Change

Steve M. Easterbrook Timothy C. Johns
Dept of Computer Science, U. of Toronto Met Office Hadley Centre

Canada United Kingdom
sme@cs.toronto.edu tim.johns@metoffice.gov.uk

Abstract

Climate scientists build large, complex simulations with
little or no software engineering training, and do not read-
ily adopt the latest software engineering tools and tech-
niques. In this paper, we describe an ethnographic study
of the culture and practices of climate scientists at the Met
Office Hadley Centre. The study examined how the scien-
tists think about software correctness, how they prioritize
requirements, and how they develop a shared understand-
ing of their models. The findings show that climate sci-
entists have developed customized techniques for verifica-
tion and validation that are tightly integrated into their ap-
proach to scientific research. Their software practices share
many features of both agile and open source projects, in that
they rely on self-organisation of the teams, extensive use of
informal communication channels, and developers who are
also users and domain experts. These comparisons offer
insights into why such practices work.

1. Introduction

The software development processes used by computa-
tional scientists for large, high performance software sys-
tems appear to differ significantly from the processes com-
monly described in the software engineering literature.
Such software is typically built to explore scientific ques-
tions for which the answers are not known in advance. Tra-
ditional software development processes are a poor fit: it is
hard to specify what software will be needed, hard to pre-
dict how long it will take to build, and hard to verify cor-
rectness [4].

Until recently, the computational science and soft-
ware engineering communities largely ignored one another.
However, there is increasing potential for the effort needed
to develop and verify the code to be a bottleneck in scien-
tific productivity [26]. Post argues that advances in com-
puting power have not been matched by advances in soft-
ware development techniques, so that time-to-solution in
many cases is growing, rather than shrinking [15]. A re-

cent DARPA HPC initiative [2] focusses on this problem by
seeking improvements in programmer productivity.

In this paper, we report on a detailed case study of the
practices used by climate scientists at a large government-
funded research lab, the Met Office Hadley Centre. Soft-
ware development for climate models is particularly inter-
esting for a number of reasons. Advances in climate science
will play a central role in shaping our understanding of the
likely impacts of climate change over the next few decades,
and hence will be particularly important for government
policy-making. Computational models have always played
a central role in this field, driving both a heavy demand for
supercomputing power, and a need for expertise in compu-
tational techniques. If there are opportunities for improve-
ments in software development practices, they are likely to
have a big impact on the field. On the other hand, if current
software engineering techniques do not offer any immediate
benefit, this presents an interesting challenge for software
engineering researchers.

Our goal in this study was to investigate how scientists
get their ideas into working code, and how they reason
about its correctness. We concentrated especially on how
scientific software differs from other forms of software en-
gineering, and how the scientists themselves view the activ-
ities around model building.

2. Related Work

Recent studies of the software development practices of
computational scientists (e.g. [4, 22, 2]) identify a number
of distinguishing characteristics. The developers are trained
primarily in their scientific discipline rather than comput-
ing or software engineering, and the distinction between
developers and users is blurred. The computational mod-
els are developed over years or decades, and so tend to use
older programming languages, for which the latest software
development tools are not available. Scientists have addi-
tional requirements for managing scientific code: they need
to keep track of exactly which version of the code was used
in a particular experiment, they need to re-run experiments
with precisely repeatable results, and they need to build al-



ternative versions of the software for different kinds of ex-
periments [13]. For all these reasons, scientific teams tend
to develop their own tools in-house, rather than relying on
external providers [2].

Computational scientists generally adopt an agile philos-
ophy, because the requirements are generally not known up
front, but they do not use standard agile process models [4].
Such projects focus on scientific goals rather than software
quality goals, and so use measures of scientific progress
rather than code metrics to manage their projects [11]. Per-
haps surprisingly, in the High Performance Computing do-
main, software performance is not always the most im-
portant non-functional requirement – it often takes second
place to code maintainability and portability [2, 11].

These studies have also indicated a rich diversity of con-
texts in which scientific software is developed and used.
Hence, there is now a need to characterize these contexts,
to identify what is common or distinct about each of them.

Software Verification and Validation (V&V) is particu-
larly hard in computational science [4], because of the lack
of suitable test oracles and observational data. The chal-
lenge is widely recognised in the earth sciences [14, 25],
where it is often argued that models should not be judged
by the degree of isomorphism with the physical world, but
by their usefulness as scientific instruments [24]. Oreskes
argues that the appropriate use of models is for hypothesis
testing and exploring “what-if” questions, rather than for
predictions and scientific “proof” [14]. In climate modeling,
scientists are faced with many choices about when to use
simplifying assumptions (e.g. parameterizing some phys-
ical processes rather than modeling them explicitly), and
when to attempt to improve realism. Hansen argues that a
top-down strategy, specifying “what to compute and how to
do it” does not produce the best science [9, p160].

The software development practices we describe in this
case study share many attributes of open source projects.
The culture of open source communities has been studied
extensively in the last decade, revealing that although these
communities are sometimes characterized purely by their
commitment to open source licensing models, they have
evolved a rich culture of software development practices,
including a bottom-up planning process, careful control
over code management and issue tracking, and a high de-
gree of shared mental models, due in part to the fact that the
developers are also both users and domain experts [6]. They
also make effective use of informal electronic communica-
tion for knowledge sharing and consensus building [21].

Finally, scientific software tends to have a very long life-
time, during which it continually evolves to reflect advances
in both the science itself and the computational techniques
used in the models. Hence, useful comparison can be made
with previous studies of software evolution [12], especially
studies of evolution in open source [8] and agile [3] projects.

3. Case Study Background

3.1. Methodology

We conducted an eight-week observational study at the
Met Office Hadley Centre, using ethnographic techniques to
identify the concepts and work practices used by the climate
scientists, and to understand their perspectives.

We selected the Hadley Centre for this study because it
is recognized internationally as a leader in climate model-
ing, and has a reputation among climate scientists as hav-
ing particularly good software development processes. This
was important because we were particularly interested in
best practices. Prior to this study, we had investigated the
Met Office’s code management practices [13]. Their use of
state-of-the-art configuration management and issue track-
ing indicated we would be able to focus on the core sci-
entific practices, and avoid the accidental complexity that
arises from poor code management.

We conducted 24 semi-structured interviews with scien-
tists selected from across the organisation, and observed a
number of meetings, including project team meetings, plan-
ning meetings, workshops, and scientific seminars. We vis-
ited two external partner organisations, to gain additional
perspectives on collaborative relationships. We analyzed
project documentation and electronic media, including the
organisational wiki and newsgroups. Notes from the inter-
views and observational sessions were typed up and cross-
referenced with documentation in the electronic reposito-
ries, and we used open coding to identify common themes.
Finally, we extracted quantitative data from the code repos-
itory to reconstruct the evolution history of the software.

We began the study with five key research questions:

• Correctness: How do scientists assess correctness of
their code? What does correctness mean to them?

• Reproducibility: How do scientists ensure experiments
can be reproduced (e.g. for peer review)?

• Shared Understanding: How do scientists develop and
maintain a shared understanding of the large complex
codes they use? E.g. what forms of external represen-
tation do they use when talking about their models?

• Prioritization How do scientists prioritize their re-
quirements? For example, how do they balance be-
tween doing what is computationally feasible and what
is scientifically interesting?

• Debugging: How do scientists detect (and/or prevent)
errors in the software?

3.2. The Met Office Hadley Centre

The Hadley Centre for Climate Prediction and Research
is part of the Meteorological Office (“Met Office”), based
in Exeter, UK. The Met Office is an operational weather



Figure 1. Conceptual view of the components and couplings of a coupled earth system model

forecasting centre, providing essential forecasting services
to a range of customers including broadcast and print media,
civil aviation, and the UK military. It is a Trading Fund
within the Ministry of Defense (MoD), which requires it
to operate on a commercial basis, and meet performance
targets set by the ministry. It employs over 1700 people.

The Met Office’s work on climate modeling began in the
early 1970’s. In 1990, the Hadley Centre was created to act
as a centre of excellence for research in climate change. The
Hadley Centre currently employs about 180 scientists and
19 IT specialists. Research funding is largely from govern-
ment grants, through the MoD and Defra (the UK Depart-
ment for Environment, Food and Rural Affairs), as well as
EU contracts. In recent years, it has expanded its mission to
include consultancy on climate impacts assessment.

Climate Research (CR) at the Hadley Centre is closely
tied with a larger Meteorological Research and Develop-
ment (Met R&D) effort at the Met Office. The two groups
mostly occupy a single open plan office space on the sec-
ond floor of the Met Office headquarters in Exeter, and have
built a single unified code base. This close relationship with
an operational weather forecasting centre is unusual for a
climate modeling group, and the use of a unified code base
is probably unique. This also makes it hard to study one
in isolation. The results we present here focus primarily on
climate research, but our interviews, and the development
practices we observed cover both groups.

3.3. Basics of Climate Modeling

Climate scientists use a range of different types of com-
putational model in their research. The most sophisticated
are General Circulation Models (GCMs), which represent

the atmosphere and oceans using a 3-dimensional grid, and
solve the equations for fluid motion to calculate energy
transfer between grid points. Such models can be run at
different resolutions, depending on the available computing
power. For example, a high resolution version of the Hadley
Centre model being developed to run on the Japanese Earth
Simulator will have an atmosphere resolution of 60 lev-
els vertically and 0.6 ◦ horizontally (≈ 60km in the mid-
latitudes), with an ocean resolution of 0.3 ◦. Older models,
with lower resolutions can be run on desktop machines.

The resolution of the model partly determines how well
various atmospheric phenomena are simulated. Coarse res-
olution GCMs can simulate large scale phenomena such as
mid-latitude weather systems, while finer resolution mod-
els are needed to simulate smaller scale phenomena such as
tropical cyclones [18]

GCMs are designed so that the subsystems can run in-
dependently, or coupled together. For example, the atmo-
sphere module can be run separately, or coupled with an
ocean model, with a coupler handling transfers of energy,
water and momentum at the ocean surface. Further com-
ponents can be coupled to a GCM, including modules rep-
resenting sea ice, atmospheric chemistry (dust and air pol-
lution), ocean biochemistry, vegetation and carbon cycles,
and so on (see Figure 1). To simulate climate change over
a century, a fully coupled model can take several months to
run on a supercomputer.

A number of trade-offs are made when building climate
models. As it is not computationally feasible to fully repre-
sent all relevant climate processes (to the level they are cur-
rently understood), climate scientists have to decide which
processes to resolve explicitly in the model, and which can



Evolution of the Unified Model

0

100

200

300

400

500

600

700

800

900

1000

Jan
1993

Jan
1994

Jan
1995

Jan
1996

Jan
1997

Jan
1998

Jan
1999

Jan
2000

Jan
2001

Jan
2002

Jan
2003

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Li
ne

s 
of

 C
od

e 
(th

ou
sa

nd
s)

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r o

f f
ile

s 
(th

ou
sa

nd
s)

Lines of Code (left hand scale) Number of Files (right hand scale)

v4.5
v5.0 v5.1

v5.2 v5.3
v5.4

v5.5 v6.0
v6.1

v6
.2

v6
.3

v6
.4 v6
.5

v6
.6

v7
.0

v7
.1

v4.4

v4.3
v4.2v4.1

v4.0
v3.5v3.4

v3.3

N
ew

D
yn

am
ic

s 

(M
ov

e 
to

 E
xe

te
r)

FC
M

 a
do

pt
ed

O
ce

an
 re

pl
ac

ed

P
or

t f
ro

m
 C

ra
y 

to
 N

E
C

U
K

C
A 

ad
de

d

v3.2
v3.1

Figure 2. Growth in size of the Unified Model over the past 15 years

be represented by a set of parameters. Parameter schemes
are developed from observational data, or from uncoupled
runs of models that do resolve the phenomena. For exam-
ple, a separate cloud resolving model can be used to gener-
ate aggregate data on cloud formation to use as parameters
in a GCM. Judgment is needed about which processes are
relevant at a particular scale of analysis, and which resolu-
tions to use to study a given problem.

The Earth’s climate is a complex system, exhibiting
chaotic behaviour [19]. The models may fail to match the
observational data for a number of reasons, and it can be
hard to identify which are applicable [10]:
• Measurement error (the observations can be wrong).
• Natural variability, from small scale weather systems

to the El Niño oscillation in the Pacific, introduces un-
correlated noise to both model and observations.

• Scaling/aggregation issues (e.g. the observation loca-
tions may not match the grid points in the model).

• Model imperfections.
Current issues in climate research include quantifying

uncertainty, assessing the impacts of climate change (e.g.
on occurrence of severe weather events), and producing bet-
ter regional predictions.

4. Findings

In this section we describe the models developed at the
Met Office and the processes by which they are developed.

4.1. The Met Office Unified Model

The Met Office maintains a common suite of Fortran rou-
tines (the Unified Model (UM)) for its Numerical Weather

Prediction (NWP) and climate models. This code base has,
arguably, been continually evolving for at least 30 years,
certainly so since the NWP and climate codes were uni-
fied about 20 years ago. Operational weather forecasting
models built from the UM include a global model, a Euro-
pean regional model, and an ocean wave model. The cli-
mate models include HadCM3, which was used to provide
data for the IPCC 2007 assessment [18], a newer generation
of global environment models, HadGEM1 and HadGEM2
(the latter will be used in the next IPCC assessment), and a
new research model, HadGEM3.

Most of the code for the UM was developed in-house at
the Met Office, at a single location. However, as the range
of expertise needed to develop climate models has grown,
it has become increasingly hard to provide all the necessary
expertise in-house. In the last few years, the Met Office has
participated in a number of consortium efforts that comple-
ment its in-house expertise. These have led to the inclusion
of UKCA, the UK atmospheric chemistry model, developed
by a group of academic research labs, and NEMO, a state-
of-the-art ocean model developed at the Centre National de
la Recherche Scientifique (CNRS) in Paris.

The current release of the UM is about 830,000 lines of
Fortran source code. The code was maintained using CVS
for a long time, but two years ago the Met Office adopted
a new code management system, FCM, based on the open
source tools Subversion and Trac [13]. Currently they re-
lease 2-3 versions of the UM per year.

Figure 2 shows the growth in size of the UM over the last
15 years. Discontinuities in the steady growth of the model
represent addition or replacement of major components: At
version 5.0, the old dynamical core of the model was re-
placed entirely, removing much of the complexity of the



old scheme, whilst improving its functionality. UKCA was
added at v6.2, and the old ocean model was replaced with
NEMO at v7.0. Two releases represent ports of the model,
with no new functionality: v6.0 was a port from the Cray to
the new NEC supercomputers (which also coincided with
the move of the Met Office headquarters from Bracknell to
Exeter), and v6.3 was a port to FCM, which also included
a cleanup of the file structure. Note the deliberately faster
release cycle after the adoption of FCM.

Interestingly, the time taken to perform a climate run
hasn’t changed over the life of the UM, because climate sci-
entists take advantage of increases in supercomputer power
to increase the resolution and complexity of the models. A
century-long climate simulation typically takes a couple of
months to run on an NEC SX-8. Scientists more often run
the models for just 1-2 decades of simulation, which can
still take a couple of weeks, depending on the model con-
figuration. Although the older models can now be run on
desktop machines, much of the leading edge science con-
cerns the newest, higher resolution models, which means
that supercomputer capacity is a major resource constraint.

In addition to the UM, the Met Office maintains a num-
ber of other critical software systems, including a User In-
terface for configuring model runs (the UMUI), an ancillary
file generator, which takes observational datasets and cre-
ates input files for the models, and a suite of data analysis
and graphics packages for studying the model outputs.

4.2. Software Evolution

As Figure 2 showed, the UM has undergone steady evo-
lution throughout its history. Drivers for change come from
several directions (see Figure 3). First, advances in the un-
derlying science lead to improvements in the way that phys-
ical processes are represented in the model. Second, the ac-
curacy of the operational weather forecast runs is analyzed
regularly, and systematic errors in these forecasts are inves-
tigated and corrected (where possible). Third, the outputs
from climate model runs are continually compared with ob-
servational data sets, and with runs of models from other
centres, to identify areas of weakness. Fourth, operational
concerns sometimes lead to changes, for example to allow
the models to run in new hardware configurations. In the
fall of 2008, the Met Office will acquire new IBM super-
computers, which will entail a large porting effort.

Occasionally, scientists make opportunistic changes to
the UM, to improve speed or to tidy up the code base. These
tend to be treated as lower priority, except in cases where
such changes are likely to lead to major improvements to the
operational forecasting models. The prevailing culture dis-
courages such changes, in part because a scientist proposing
such a change must demonstrate that it will have no nega-
tive effects on the accuracy and performance of any of the
operational models.

UM 
Code 
Base

Analysis
of climate
simulation

runs

Physics
research

Operational
concerns

Analysis 
of NWP
forecast

runs

code
cleanup

better
techniques

new
data

new
insights

comparison
with

observations

comparison
with

control run

comparison
with

other models

accuracy
measuresnew

forecasting
services

performance
enhancement

coding
best

practices

port 
to new

platforms

new hardware
configurations

Customers
Other

research
groups

Figure 3. Sources of change to the UM code

These change drivers are largely internal to the Met Of-
fice. The Met Office’s customers do not interact with the
software directly, and so customer requirements affect the
change process only indirectly, for example when forecast-
ers identify a demand for new types of weather forecast
data, or when the computational load needed to generate
deliverables for sponsors restricts the availability of super-
computer nodes for development work. On the other hand
other climate research centres do run the models them-
selves. Change requests from peer institutes and science
review committees are filtered through Met Office contacts.

These change drivers lead to a number of requirements
conflicts. For example, there is often a trade-off between
improving the skill of the models in reproducing observed
weather and climate variations, versus improving the sci-
entific validity of the physics schemes. The models have
to be tuned empirically by adjusting the parameterization
schemes, because both the models and the parameteriza-
tions are only approximations of the real physical processes.
Such tuning means that improvements that are more sci-
entifically justifiable sometimes decrease the model’s skill.
The scientists sometimes talk of the models getting a good
match with observations for the wrong reasons1.

The conflict is complicated by the use of the UM for
operational forecast models, which have strong constraints
on performance (forecasts must be delivered on time) and
accuracy (the Met Office has annual targets for improve-
ments in weather forecast accuracy). Changes, such as sci-
entific improvements, may individually have negative ef-
fects on performance or forecast accuracy, and so might be

1This problem resembles the overfitting sometimes observed in bench-
marking efforts [23].



resisted by the user base unless part of a combined package
of changes that has an overall positive effect. Such conflicts
are sometimes dealt with by including several alternative
versions of various physics schemes within the UM, which
can be selected when different models are built.

4.3. The Development Process

The software development processes used for the UM
have also undergone significant evolution over the life of
the code. In particular, the adoption of FCM has institution-
alized practices that previously were not applied systemat-
ically. Here we describe the processes we observed in the
summer of 2008, two years after FCM was introduced.

Met Office staff play a number of distinct roles, organ-
ised like the ‘onion’ model often observed in open source
projects. At the core, about twelve people from the two IT
support teams (Met R&D and CR) control the acceptance
of changes into the trunk of the UM. They act as experts
for integration and platform-specific issues. Many of them
have scientific backgrounds, with PhDs in numerical com-
puting or related fields. At the next layer, about 20 of the
more senior scientists act as code owners, each responsible
for specific sections of the UM (e.g. atmosphere, ocean,
boundary layer, dynamical core, etc). Code owners are do-
main experts who keep up to date with the relevant science,
and maintain oversight of developments to their sections of
the model. Membership in these two layers rarely changes.

In the outer layers are scientists who run the models as
part of their research. A “configuration manager” is ap-
pointed for each climate model, usually a more junior sci-
entist. Configuration managers become the local experts
for knowledge about how to configure the model for partic-
ular runs, and keep track of the experiments performed with
the model. About 100 Met Office scientists contribute the
bulk of the code changes for any given release. These sci-
entists regularly use the models in their scientific research,
and make changes for any of the reasons given in Figure 3.
Finally a broader group of scientists both within and out-
side the Met Office make occasional use of the models, and
might suggest potential improvements.

Releases of the UM are planned on a regular schedule,
typically every 4-5 months. All changes to the model are
captured as tickets in Trac, and tickets are allocated to up-
coming releases using an agile planning approach. Approx-
imately three months into the release cycle, there is a dead-
line for tickets to be included for that release, and one month
later there is a code freeze (the IT teams refer to it as frost-
ing rather than a freeze, as some changes are still permitted).
One further month is allowed for the IT teams to ensure all
configurations of the models work properly, fix any remain-
ing bugs, and ensure the UMUI is updated. A release date
isn’t fixed until this work is complete.

Each change passes through two review stages before

being accepted into the trunk of the UM. First, a scien-
tific review is done by the relevant code owner. Significant
changes are typically discussed with code owners in ad-
vance, to explore the scientific justification and relative pri-
ority, while smaller changes are submitted for review once
they are complete. Second, an IT team member performs
a system review. This focuses on coding standards, basic
code hygiene (e.g. that files are opened and closed prop-
erly), potential performance issues, and integration testing
across different model configurations. Once the review is
passed, the IT teams accept the change into the trunk (no
more than four per day), and run an automated test harness
every night on the updated trunk. Tickets are closed once
the changes pass this overnight test.

The process is overseen with a very lightweight project
management. The management philosophy at the Met Of-
fice Hadley Centre is that, as a centre of excellence, the sci-
entists should have plenty of freedom to set their own re-
search goals. Each of the named climate models is defined
as a project using the PRINCE project management method,
to identify the strategic scientific objectives, allocate re-
sources, and manage risk. But within a project, a bottom-up
strategy dominates, with individual team members taking
the initiative to identify what needs doing, and to prioritize
tasks. The result is a hybrid strategy in which code devel-
opment proceeds using an agile planning approach, while
specific model configurations are more carefully controlled.

4.4. Verification and Validation

V&V processes are dominated by the understanding that
the models are imperfect representations of very complex
physical phenomena. Instead of reasoning about code “cor-
rectness”, the scientists at the Met Office treat the models as
evolving theories, and design experiments using the models
to test specific hypotheses. They constantly make choices
about model resolutions and timescales, and which modules
should be coupled in and which should be parameterized.

Analysis of the model outputs is perhaps the most com-
mon activity, to look for causes of error and ways to reduce
it. The scientists have developed a set of visualizations for
displaying the results from model runs. Figure 4 is a typ-
ical example, showing model data plotted across a global
map. Such visualizations appear everywhere: on people’s
desks, pinned to the walls, passed around in meetings, and
on powerpoint slides used in scientific seminars.

During development, model runs are set up as experi-
ments. A previous run is used as a control, the changed code
is the experimental condition, and observational datasets are
used to assess whether the change has had the expected ef-
fect. Automated tools provide the necessary visualizations
for all the relevant variables in what is termed a validation
note. For example, figure 4 shows the effect on mean pres-
sure at sea level (PMSL) for December to February (djf)



Figure 4. Example Validation Note

of the addition of a new polar filter. 4(a) shows the new
model run, 4(b) shows the new run minus the control run,
4(c) shows the control run minus the observational data, and
4(d) shows the new run minus the observational data. These
maps give instant visual feedback on the experimental re-
sults, in this case that the change has produce the expected
improvement in the antarctic.

This approach means that the scientists are performing
continuous integration testing, but don’t view it as such, be-
cause for them it is part of the business of “doing science”.
They don’t need “finished” software to perform these ex-
periments – they need to continually experiment with the
software itself to improve their understanding.

A second V&V strategy is to automatically check for bit
comparison between the outputs of two different runs. This
is useful for checking that a change didn’t break anything it
shouldn’t. Each change is designed so that it can be “turned
off” (via run-time switches) to ensure previous experiments
can be reproduced. However, reproducibility can only be
guaranteed if the outputs of the old run and the new run are
exactly identical (down to the least significant bits). Also,
the models are designed to be run on different platform con-
figurations, for example over a single or multiple proces-
sors. Bit comparison tests can check that all configurations
give identical results. Bit comparison tests are taken very
seriously. The IT staff run these tests, and maintain a wiki
page listing changes that break bit-level reproducibility.

This use of bit-level comparison has not been observed
in other fields of scientific computation, and may be unique
to the climate modeling community. A major advantage is
that it can be used to shortcut (and partially automate) both
regression and configuration testing. Because full model
runs take so long, a useful shortcut is to run the model
for, say, one simulation day (which only takes a few min-
utes) and run the bit comparison test on all model variables.

Bit-level reproducibility on a short run is a good (but not
perfect) indicator of reproducibility over longer runs. The
overnight test harness performs a number of such tests. The
disadvantage is that it enforces a strong conservativeness on
model changes, so that refactoring is almost impossible, ex-
cept when bit comparison is already lost for other reasons,
such as on porting to a new supercomputer. The practice
dates back to the very early days of the UM.

Another V&V strategy is to compare results with other
models. Such comparison is formalized in a series of
community-wide Model Intercomparison Projects (MIPs)
and the use of model ensembles [5]:

• Multi-model ensembles are used to compare models
developed at different labs on a common scenario.

• Multi-model ensembles using variants of a single
model are used to compare different schemes for parts
of the model, e.g. different radiation schemes.

• Perturbed physics ensembles are used to explore prob-
abilities of different outcomes, in response to system-
atically varying physical parameters in a single model.

• Varied initial conditions within a single model are used
to test the robustness of the model, and to better quan-
tify probabilities for predicted climate change signals.

Model comparisons are also used informally, as a strategy
for investigating sources of error. For example, a suspected
problem in the soil hydrology module was investigated by
comparing results with models from other labs. This led to
the discovery that the coder had interpreted a formula from
a published paper as a loge, when it should have been log10;
other groups had interpreted it correctly.

Overall code quality is hard to assess. During develop-
ment, problems that prevent the model running occur fre-
quently, but are quickly fixed. Most of these are model con-
figuration problems rather than defects in the code. Some
types of error are accepted as modelling approximations,
rather than defects. For example, errors that cause instabil-
ities in the numerical routines, or model drift (e.g. over a
long run, when conservation of physical properties such as
mass is lost) can be complicated to remove, and so might
be accommodated by making periodic corrections, rather
than by fixing the underlying routines. The combination of
continuous integration testing by the scientists, and bit re-
producibility tests catch most errors prior to release.

We have not attempted a detailed analysis of post-release
code defects. Over the last six releases, there were an aver-
age of 24 “bug fix” tickets per release, against an average of
50,000 SLOC touched per release, suggesting that 2 defects
per 1,000 changed lines of code made it through the test-
ing and review process for the previous release (and were
subsequently discovered)2. However, these numbers must

2this suggests a defect density for the current release of 0.03 defects per
KSLOC (≈ 24 latent defects in 831,157 SLOC).



be interpreted carefully because many of these “bug fixes”
represent defects that were detected, but treated as accept-
able model imperfections in previous releases.

4.5. Maintaining a Shared Understanding

Scientists at the Met Office use a number of different
strategies to maintain a shared understanding of the soft-
ware. Formal design documentation exists for the UM, but
is only sporadically updated. The scientists working on the
model rely heavily on face-to-face communication, together
with a large number of number of “informalisms” [21].

Face-to-face communication dominates. The large open
plan office encourages this. It is possible to reach most of
CR and Met R&D without traversing any doors or stairs.
The office culture discourages noise, but many short 1-on-1
technical conversations are held at people’s desks. Longer
conversations and meetings are held in meeting pods scat-
tered around the office, or in social gathering spaces on
the landings and the ground floor coffee shop. Several
people commented that coordination has improved dramat-
ically since the move to Exeter; previously CR and Met
R&D were in separate buildings. Cross-functional teams
are often formed to investigate specific model issues, e.g.
ongoing problems with the Indian monsoon.

The teams also make extensive use of electronic media
for informal communication and coordination. A site-wide
wiki is used extensively as a repository for informal doc-
umentation (design notes, to-do lists, task status reports,
glossaries, etc). Site-specific newgroups are used for both
social interaction and technical communication. For exam-
ple, the IT team use them to broadcast the status of trunk in-
tegration, overnight test results, and problems encountered.

Representations of the code itself are rare. Occasionally,
people draw flowcharts to show the control structure of a
new scheme. Written descriptions of designs, defects, and
potential improvements all focus primarily on the underly-
ing equations. Test results are described almost exclusively
through the use of graphs of the results, focussing primarily
on root mean squared (rms) error against observational data.
Some scientists use the wiki as an electronic lab book, cre-
ating a page to describe each experiment, to summarize the
setup and results, and link to the detailed validation notes.

When asked about the major challenges in their work,
nearly everyone we interviewed described some aspect of
the effort needed to coordinate their work with others: keep-
ing their branches up to date, knowing what changes are
happening elsewhere, managing the model configuration
options, and so on. Some described coordination problems
with external groups who are using older versions of the
model (the public releases of the model tend to lag the in-
ternal releases by at least a year).

Finally, we noticed some evidence of ontological
drift [20]. For example a proposed glossary entry on “bit

comparison” on an internal newsgroup revealed some peo-
ple took it to mean the regression tests, while others took it
to mean the platform configuration comparisons. Similarly,
an open meeting to discuss a new initiative on seamless
assessment revealed that several participants had very dif-
ferent understandings of key terms such as “traceability” 3.
Robinson and Bannon [20] suggest that such drift is normal
in technical communities; our study indicated the scientists
at the Met Office were effective at using the informal com-
munication channels to identify and resolve such drift.

4.6. Community Models

The fact that model development has taken place at a sin-
gle site appears to be important. Randall [17] reports that
all existing GCMs were developed at large research labs,
with no geographically distributed development, and sug-
gests that the complexity of the coupling prevents it. How-
ever, occasionally a module is transplanted from one lab
to another. For example, the original ocean model used
in the Hadley Centre GCMs was an early version of the
MOM ocean model developed at GFDL in Princeton, NJ.
Its replacement, NEMO, was developed at CNRS in Paris.
Such transplants allow a modeling group to tap into exper-
tise available elsewhere, but is not without problems.

Technical challenges arise from getting a complex ex-
ternal component to work within the existing GCM archi-
tecture. The component may need to be ported and op-
timized for performance on a different computer. To get
the coupling to work, both the GCM and the new compo-
nent may need to be modified. Seemingly trivial technical
details (e.g. tiny differences in physical constants such as
the radius of the earth) can cause problems, and are hard
to track down. When the GFDL ocean model was incorpo-
rated into the UM, the modifications led to a fork from the
GFDL model. Forking the model meant that although the
Met Office gained a state-of-the art ocean model, it lost ac-
cess to the ongoing scientific expertise at GFDL to keep the
ocean model updated.

To avoid such forking with NEMO, a consortium agree-
ment has been set up between the Met Office, CNRS, and
other partners. Several coordination problems remain to be
solved. NEMO is maintained by a small group in Paris,
whose development cycle does not match that used at the
Met Office. The consortium has to deal with tensions be-
tween the needs of individual members to customize and
optimize NEMO for use in their own coupled models, ver-
sus maintaining the original design philosophy and flex-
ibity of NEMO. The issues are similar to the problem of
forkability in open source projects [7]. Although forking
a project is always possible, it is invariably bad for every-

3The intended meaning is to do with the ability to compare the results of
the same model when run at different resolutions and different timescales.



one involved to do so. Recognition of this fact strongly en-
courages open source communities to resolve such tensions
democratically.

These external collaborations have become a key part
of the Met Office’s strategy in the last few years, to fos-
ter stronger collaborations with other research groups, and
to tap into pools of expertise not available in-house. Ex-
amples include UKCA, an atmospheric chemistry module,
JULES, a land surface scheme, and HiGEM, a community
adaptation of HadGEM1 for higher resolutions. All of these
are being developed by communities of academic partners
in the UK. However, it is notable that in each of these com-
munity efforts, control of the core code base remains at a
single site, with the partners tending to specialize in partic-
ular areas, and submitting their changes to the central site
for inclusion in the reference model. These groups have not
adopted the geographically distributed development used in
open source communities. The result is that the core site
can become a bottleneck.

Another tension in these community efforts comes from
the different goals of academic partners, versus operational
forecasting centres such as the Met Office. The former are
geared primarily towards publication of scientific results.
The latter have to satisfy hard goals on accuracy of their op-
erational forecasting models, as well providing deliverables
to customers for climate change consultancy. This has the
potential to lead to a culture clash in the extent to which
development cycles and review processes are formalized.

5. Discussion

Our study confirms many of the basic observations of the
software practices of computational scientists reported else-
where [4, 22, 2]. The scientists have little formal training
in software engineering, and are skeptical of most claims
for software engineering tools. However, where such tools
match their needs (e.g. for code management and ver-
sion control), they are readily adopted. The software has a
very long lifetime, is written in an “old” programming lan-
guage (Fortran), and performance issues are carefully bal-
anced with maintainability and portability concerns. As in
Kendall’s study [11], we found that the developers had a
strong shared scientific background, adopt an informal, col-
legial management style, with a culture of member partici-
pation and shared responsibility.

We found no evidence of Post’s slowing down of “time-
to-solution” [15] in this case study. The near-linear growth
of the Unified Model over the past fifteen years indicates
a steady growth of functionality, despite the growing com-
plexity of the model. This steady growth is inconsistent
with the findings of Lehman and colleagues, who found
that for large commercial systems, the growth rate tails off
as the software increases in size and complexity [12]. In-

stead, it more closely resembles the evolution patterns of
open source projects reported by Godfrey [8]. We hypoth-
esize that this is due to the many shared features with open
source projects, which we discuss below.

A notable characteristic of this study is the broad set of
approaches used for V&V. The use of bit-comparison tests
as a technique for regression testing appears to be unique
to this community, and reflects both a scientific concern for
reproducibility of experiments, and the challenges of au-
tomating testing when full runs can take weeks or months
to complete. Frequent end-to-end integration testing is built
into the scientific practices. Scientists spend a lot of time
experimenting with each change to the model, comparing
the results with control runs and observational data. Hence,
integration testing is not regarded as a costly burden (even
though it is costly), because it is part of “doing science”.
The extensive use of model inter-comparisons and model
ensembles is also a distinct feature of this community.

The organisation behaves in some ways like an agile
software development company, with all the developers
housed in one very large open plan office, and a very strong
reliance on informal communication channels. It uses many
of the practices of agile development, including release
planning, onsite customer, collective ownership, continuous
integration, and risk management, but does not use any es-
tablished agile process model. It also operates on a scale
much larger than any agile team described in the literature.

These observations suggest interesting insights into ag-
ile practices. The Met Office has developed a set of prac-
tices that work very well for its particular context. They
resemble agile practices in part because agile practices also
have this character: over a period of time a set of smart, en-
gaged people have figured out for themselves what works.
This supports the argument that agile development is a set
of best practices adopted by developers because they work
well in a particular setting. It is also consistent with stud-
ies of successful software startup companies [1], in which
all the companies could be characterized as using a subset
of “agile” practices, but each within a distinct, home-grown
process model. Over time, it appears that these organiza-
tions evolve processes that are highly adapted to their “eco-
logical niche”. This probably only happens in stable, well-
established teams with long history of working together,
which was the case for the majority of companies examined
in [1], and for the scientists working at the Met Office. Such
observations also suggest that domain-independent process
models (such as RUP, SCRUM, XP, etc) are simply irrele-
vant to these organisations.

A comparison with open source software (OSS) projects
is also apt [8]:

• The release schedule is not driven by commercial pres-
sure, because the code is used primarily by the devel-
opers themselves, rather than released to customers.



• The developers are also the domain experts. Most have
PhDs in meteorology, climatology, numerical meth-
ods, or related disciplines, and most of them regularly
publish in the top peer-reviewed scientific journals.

• They control the code by having a small number of
code owners and a much larger set of contributors, and
a careful review process to decide which changes get
accepted into the trunk.

• The community operates as a meritocracy. Roles are
decided based on perceived expertise within the team.
Code owners are the most knowledgeable domain ex-
perts, and code ownership tends to be stable over the
long term.

• The developers all have “day jobs” - they’re employed
as scientists rather than coders, and only change the
model when they need something fixed or enhanced.
They do not to delegate code development tasks to oth-
ers because they have the necessary technical skills,
understand what needs doing, and because its much
easier than explaining their needs to someone else.

• V&V practices rely on the fact that the developers are
also the primary users, and are motivated to try out one
anothers’ contributions.

However, the Met Office lacks two characteristics that
are usually thought of as key distinguishing traits of OSS
projects: geographically distributed teams and a commit-
ment to open source licencing. This suggests an interesting
hypothesis: the success of open source projects may have
more to do with a community of (very smart) domain ex-
perts building and testing software for their own use, rather
than any commitment to the philosophy of free/open source
software and volunteerism. Such experts figure out over
time how to solve problems of coordination and communi-
cation, prefer to work in a meritocracy, and build or adapt
their own tools rather than rely on commercial tools.

6. Limitations

We used an ethnographic approach for this study, inves-
tigating how the scientists themselves talk about their work.
Mapping their concepts onto terms used in the software en-
gineering literature may be problematic. For example, it
was hard to distinguish “software development” from other
aspects of the scientific practice, including data analysis,
theorizing, and the development of observational datasets.
From a scientific point of view, the distinction between
changing the code and changing the parameters is artificial,
and scientists often conflate the two — they sometimes re-
compile even when it shouldn’t be necessary. Therefore,
characterizations of model evolution based purely on source
code changes miss an important part of the picture. We

would need to analyze the evolution of datasets (ancillary
files and input parameters) to overcome this limitation.

Similarly, there is likely to be a difference in how the sci-
entists perceive defects and bug fixes, compared to the use
in the software engineering literature, because model im-
perfections are accepted as inevitable. Hence, any measure
of defect density may not be comparable with that of other
types of software.

The primary threat to internal validity comes from re-
searcher bias. Data collection and analysis was performed
by the first author, who has a software engineering back-
ground and is new to climate science. Analysis and fol-
lowup discussions focussed on issues that seemed unusual
or remarkable from a software engineering perspective. The
second author provided a climate scientist’s view on these
issues as they were identified, and helped to correct any mis-
understandings of the scientific practices.

We cannot claim that the observations in this case study
generalize. As a climate modeling centre, the Met Office
Hadley Centre is unique in some ways, particularly in the
close relationship with a major operational weather fore-
casting facility. The software development processes are
highly tailored to the Met Office’s needs. Hence our obser-
vations about why such tailoring has occurred, and why the
processes work is likely to be more useful than any specific
detail of the processes themselves.

7. Conclusions

Our goals in this study were to characterize the soft-
ware development practices of climate scientists as a partic-
ular subtype of computational science. The study confirms
many of the general observations of earlier studies. Notable
differences include the sophistication and variety of the ap-
proaches used for V&V, and the absence of any obvious
confirmation bias. Climate scientists accept that imperfec-
tions in their models are inevitable, and focus their attention
on identifying and reducing modeling errors.

The Met Office has evolved a software development pro-
cess that is highly adapted to its needs, which relies heavily
on the deep domain knowledge of the scientists building the
software, and is tightly integrated with their scientific re-
search practices. The V&V practices are absorbed so thor-
oughly into the scientific research that the scientists don’t
regard them as V&V. However, they do appear to rely heav-
ily on informal face-to-face communication to allow the sci-
entists to develop a shared understanding of their models.

The software development practices at the Met Office
share a number of features with both agile and open source
development projects. The comparison offers interesting in-
sights into why the practices used by these communities
work. In particular, all three communities (open source,
agile, and scientific software) rely on the deep expertise



and self-organisation of their developers. We hypothesized
that under such circumstances, the developers will gradu-
ally evolve a set of processes that are highly customized
to their context, irrespective of the advice of the software
engineering literature. However, further research into such
comparisons is needed to investigate these observations.

Post & Votta argue that computational science needs
a new paradigm to address the prediction challenge [16].
They point out that most fields of computational science
lack a mature, systematic software validation process that
would give confidence in predictions made from computa-
tional models. Our study indicates that for climate science,
at least as practiced at the Met Office, such model valida-
tion is routinely performed, as it is built into a systematic
integration and regression testing process, with each model
run set up as a controlled experiment. Furthermore, climate
science as a field has invested in extensive systems for
collection and calibration of observational data to be used
as a basis for this validation. Climate models have a sound
physical basis and mature, domain-specific software devel-
opment processes. Hence it is hard to identify potential for
radical improvements in the efficiency of what is a “grand
challenge” science and software engineering problem.

Acknowledgements: We thank everyone at the Met Office
who participated in this study for many stimulating discussions,
and Jorge Aranda, Greg Wilson, Jeff Carver, Janice Singer and
Jon Pipitone for comments on earlier drafts. Fig 3 is due to
Damian Wilson. Primary funding for the study was provided
by NSERC. Tim Johns was supported by the Defra & MoD
Integrated Climate Programme - (Defra) GA01101, (MoD)
CBC/2B/0417 Annex C5

References

[1] J. Aranda, S. Easterbrook, and G. Wilson. Requirements in
the wild: How small companies do it. In IEEE International
Requirements Eng. Conf. (RE’07), pages 39–48, 2007.

[2] V. Basili, J. Carver, D. Cruzes, L. Hochstein,
J. Hollingsworth, F. Shull, and M. Zelkowitz. Under-
standing the High-Performance-Computing Community:
A Software Engineer’s Perspective. IEEE Software,
25(4):29–36, 2008.

[3] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. Sharp, and
N. Smith. An Empirical Study of the Evolution of an Agile-
Developed Software System. In 29th Int. Conf. on Software
Engineering, pages 511–518, 2007.

[4] J. Carver, R. Kendall, S. Squires, and D. Post. Software
Development Environments for Scientific and Engineering
Software: A Series of Case Studies. In 29th Int. Conf. on
Software Engineering (ICSE’07), pages 550–559, 2007.

[5] M. Collins. Ensembles and probabilities: a new era in the
prediction of climate change. Philosophical Trans. of the
Royal Society, 365(1857):1957–1970, 2007.

[6] K. Crowston, K. Wei, J. Howison, and A. Wiggins.
Free/Libre Open Source Software: What we know and what
we do not know. Submitted for publication, 2008.

[7] K. Fogel. Producing Open Source Software: How to run a
successful free software project. O’Reilly, 2006.

[8] M. Godfrey and Q. Tu. Evolution in open source software:
A case study. In IEEE Int. Conf. on Software Maintenance
(ICSM’00), pages 131–142, 2000.

[9] J. Hansen, R. Ruedy, A. Lacis, M. Sato, L. Nazarenko,
N. Tausnev, I. Tegen, and D. Koch. Climate Modeling in
the Global Warming Debate. In D. Randall, editor, General
Circulation Model Development: Past, Present, and Future.
Academic Press, 2000.

[10] R. Katz. Techniques for estimating uncertainty in climate
change scenarios and impact studies. Climate Research,
20(2):167–185, 2002.

[11] R. Kendall, J. Carver, D. Fisher, D. Henderson, A. Mark,
D. Post, C. Rhoades Jr, and S. Squires. Development of a
Weather Forecasting Code: A Case Study. IEEE Software,
25(4):59–65, 2008.

[12] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski.
Metrics and laws of software evolution-the nineties view. In
IEEE Int. Software Metrics Symp. (METRICS’1997), 1997.

[13] D. Matthews, G. V. Wilson, and S. M. Easterbrook. Configu-
ration Management for Large-Scale Scientific Computing at
the UK Met Office. Computers in Science and Engineering,
2008. In press.

[14] N. Oreskes, K. Shrader-Frechette, and K. Belitz. Verifica-
tion, Validation, and Confirmation of Numerical Models in
the Earth Sciences. Science, 263(5147):641, 1994.

[15] D. Post. The Coming Crisis in Computational Science. In
IEEE Int. Conf. on High Performance Computer Architec-
ture: Workshop on Productivity and Performance in High-
End Computing, 2004.

[16] D. Post and L. Votta. Computational Science Demands a
New Paradigm. Physics Today, 58(1):35, 2005.

[17] D. Randall. A University Perspective on Global Climate
Modeling. Bulletin of the American Meteorological Society,
77(11):2685–2690, 1996.

[18] D. A. Randall, et. al. Climate Models and Their Evalua-
tion. In S. Solomon, et. al., editor, Climate Change 2007:
The Physical Science Basis. Contribution of Working Group
I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge U. Press, 2007.

[19] D. Rind. Complexity and Climate. Science, 284(5411):105,
1999.

[20] M. Robinson and L. Bannon. Questioning representations.
In 2nd European Conf. on Computer-Supported Cooperative
Work, pages 219–233, 1991.

[21] W. Scacchi. Free/open source software development: re-
cent research results and emerging opportunities. In IEEE
Int. Symp. on the Foundations of Software Engineering
(ESEC/FSE’07), pages 459–468, 2007.

[22] J. Segal and C. Morris. Developing Scientific Software.
IEEE Software, 25(4):18–20, 2008.

[23] S. Sim, S. Easterbrook, and R. Holt. Using benchmarking
to advance research: a challenge to software engineering.
In 25th IEEE Int. Conf. on Software Engineering (ICSE’03),
pages 74–83, 2003.

[24] N. Stehr. Models as Focusing Tools: Linking Nature and
the Social World. In H. von Storch and G. Flöser, editors,
Models in Environmental Research. Springer, Berlin; New
York, 2001.

[25] J. Sterman. The Meaning of Models. Science,
264(5157):329–330, 1994.

[26] G. Wilson. Where’s the real bottleneck in scientific comput-
ing? Am Sci, 94(5), 2005.


