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Abstract
Although it has never been rigorously demonstrated, there 
is a common belief that grades in computer science courses 
are bimodal. We statistically analyzed 778 distributions of 
final course grades from a large research university and 
found that only 5.8% of the distributions passed tests of mul-
timodality. We then devised a psychology experiment to 
understand why CS educators believe their grades to be 
bimodal. We showed 53 CS professors a series of histograms 
displaying ambiguous distributions that we asked them to 
categorize. A random half of participants were primed to 
think about the fact that CS grades are commonly thought to 
be bimodal; these participants were more likely to label 
ambiguous distributions as “bimodal.” Participants were 
also more likely to label distributions as bimodal if they 
believed that some students are innately predisposed to do 
better at CS. These results suggest that bimodal grades are 
instructional folklore in CS, caused by confirmation bias 
and instructor beliefs about their students.

1. INTRODUCTION
It is a prevailing belief in the computer science education 
community that CS grades are bimodal, and much time has 
been spent speculating and exploring why that could be (For 
a review, see Ahadi and Lister1.) These discussions generally 
do not include statistical testing of whether the CS grades 
are bimodal in the first place. From what we have seen, peo-
ple take a quick visual look at their grade distribution, and if 
they see two peaks, they conclude that it is bimodal. But eye-
balling a distribution is unreliable; for example, if you expect 
the data to have a certain distribution, you are more likely to 
see it.

Anecdotally, we have seen new instructors and TAs (and 
students) who have shown histograms of grades and told the 
grades were “bimodal.” The bimodality perception hence 
becomes an organizational belief, and those who enter the 
community of practice of CS educators are taught this belief.

1.1. Explanations for bimodal grades
A number of explanations have been presented for why CS 
grades are bimodal, all of which begin with the assumption 
that this is the case.

Prior experience. A bimodal distribution generally indicates 
that two distinct populations have been sampled together.5 
One explanation for bimodal grades is that CS1 classes have 
two populations of students: those with experience, and 
those without.1

In many places, high school CS is not common or stan-
dardized, and so students enter university CS with differing 
amounts of prior experience. However, this explanation fits 

The original version of this paper was published in the 
Proceedings of the 2016 ACM Conference on International 
Computing Education Research (ICER).

students into only two bins. Prior experience is not as simple 
as “have it” vs. not-there is a wide range of how much prior 
programming experience students may have, and practice 
with nonprogramming languages such as HTML/CSS could 
also be beneficial.18

Learning edge momentum, stumbling points, and thresh-
old concepts. One family of explanations posits that some 
CS concepts are more difficult for students to learn, and if 
they miss these concepts, they fall behind, whereas their 
peers advance ahead of them. As it is typically taught, CS1 
builds on itself heavily. So once a student falls behind, they 
continue to fall further and further behind.1 This may be 
exacerbated by the fact that some concepts may be key to 
understanding (“threshold concepts”). One might think of 
this explanation as a variant of the prior-experience explana-
tion, where the students who have better study skills suc-
ceed, and those with weaker skills fall behind.

The Geek Gene Hypothesis. Some would instead argue 
that the two populations in CS1 classes are those who have 
some “natural talent,” giftedness, or predisposition to suc-
ceed at computing. Guzdial has referred to this belief as the 
“Geek Gene Hypothesis”.6 This belief appears to be quite 
prevalent. In a survey of CS faculty, Lewis found that 77% of 
them strongly disagree with the statement “Nearly everyone 
is capable of succeeding in the computer science curricu-
lum if they work at it.”14 However, there seems to be little evi-
dence that there is indeed a “Geek Gene”, and plenty of 
evidence that effective pedagogy allows for all students to 
succeed.8

Coarse assessment. Another line of explanation impli-
cates instructors’ assessment tools as the source of bimod-
ally distributed grades.28, 20 A common trend on CS exams is 
to ask a series of long-answer coding questions. Zingaro  
et al. found that these questions offer only coarse assess-
ment information to instructors: students either put all the 
pieces together, or fail to. Instructors do not adequately 
identify when a student has partial understanding nor quan-
tify how much understanding a student has of a concept.

As an alternative, Zingaro et al. experimentally compared 
using short-answer questions that build upon each other to 
have one isomorphic long-answer question. When the different 
conceptual parts of the question were broken up, the result-
ing grades were normally distributed. The all-or-nothing 
nature of long-answer questions could lead to grades more 
likely to be (or appear) bimodal.28

Or perhaps CS grades are not bimodal? A competing view 
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of CS grades put forth by Lister is that the grades are not, in 
fact, bimodal.15 Lister observed that CS grade distributions 
are generally noisy, and in line with what statisticians would 
accept as normally distributed. Lister argued that the percep-
tion of bimodal grades results from instructors’ beliefs in the 
Geek Gene Hypothesis, and hence, instructors see bimodal-
ity where there is none.15 Lister’s argument was theoretical, 
and based on statistical theory; in this paper, we test his argu-
ment by statistically analyzing actual grade distributions.

2. WHAT IS A BIMODAL DISTRIBUTION?
To properly tackle the question of “are CS grades bimodal?”, 
we should first clearly establish what bimodality means. For 
a comprehensive discussion of this, we suggest the reader 
consult25; we summarize some major points of that article in 
this section.

Most standard continuous probability distributions have 
a mean, a median, a mode, and some measure of the distri-
bution’s width (variance). Standard distributions include the 
normal (Gaussian), Pareto, Poisson, Cauchy, Student’s t, and 
logistic distributions. When we plot them (or likely, a sample 
thereof) with a histogram, we see their probability density. All of 
these distributions have a single mode, and have a probabil-
ity density that can be modeled with a function that has a 
single term. For example, the normal distribution’s PDF is

In this function, a represents the height of the curve’s peak, 
b is the position of the center of the peak, and c represents 
the width of the curve.27

In contrast, a bimodal distribution has two distinct 
modes. A ‘multimodal’ distribution is any distribution with 
multiple distinct modes (two or more). For example, con-
sider these examples from.25 Both are created by the equal 
mixture of two triangular distributions (solid lines). The 
sums are shown with dashed lines:

As we can see, when the two subdistributions are far away 

(example a), we get a distribution with two peaks. But when 
the two subdistributions are close together (example b), they 
add together to form a plateau, with a single peak. Example 
a is considered bimodal; example b is not.

The same is true for normal distributions (also from 
Schilling et al.25):

For a distribution to be bimodal, the subdistributions 

cannot overlap too much. As shown in Schilling et al.25, for 
the two distributions to be sufficiently far apart, the distance 

between the means of the two distributions needs to exceed 
2σ. This, however, assumes that the two distributions have 
the same variance. More formally, if the two subdistribu-
tions do not have the same variance, then for their sum to be 
bimodal, the following must hold26:

2.1. Histograms can deceive
Consider this histogram of sepal widths for the Iris species 
versicolor, taken from the Wikipedia page on “normal 
distribution”27:

The data has two peaks, but the data is considered to be 

sampled from a normal distribution. If we were to try and 
model this data as the mixture of two normal distributions, 
the two subdistributions would be too close together to pro-
duce two distinct peaks. The simplest way to model this data 
is as a normal distribution, especially as this is consistent 
with biological theory.

Remember that what we see in a histogram is a result of 
how we select the bins. It is possible to bin this data in a way 
that does not have two ‘peaks’ (for example, by using larger 
bin intervals, or shifting the bin boundaries). With grade 
distributions, ceiling effects are common: if you take nor-
mally distributed data, and then lower the values above 
100% down to 100%, you may wind up seeing a second “peak” 
in your histogram’s top bin. For an illustration, see distribu-
tion 6 in Figure 1.

3. STUDY 1: GRADES ANALYSIS
Are CS grades bimodal, or unimodal? To test this, we 
acquired the final grade distributions for every undergradu-
ate CS class at the University of British Columbia (UBC), 
from 1996 to 2013. This represents 778 different lecture sec-
tions, containing 30,214 final grades (average class size: 75). 
We analyzed this data to see what distribution(s) it may have 
most likely come from. Frequentist null-hypothesis testing 
is the standard in computer science education research; for 
readers who are unfamiliar interpreting p values from null-
hypothesis tests, we recommend consulting Goodman.4

3.1. Testing for multimodality
We began by computing the kurtosis for each class. Kurtosis 
is a measure of how ‘tailed’ the data is: high kurtosis means 
a distribution has a sharp peak and short tails, whereas low 
kurtosis implies low peak(s) and long tails.

If you look back at the illustration of adding two normal 
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distributions together, for the bimodal example, the distri-
bution winds up being rather spread out horizontally. That 
distribution has low kurtosis. Indeed, for a distribution to 
be spread out far enough horizontally to allow for multimo-
dality, it necessarily will have low kurtosis.

The normal distribution has a kurtosis of three. A distri-
bution with a kurtosis greater than three cannot be 
bimodal.26 We found that 323 of the 778 classes had a kurto-
sis less than 3. This means that 455 (58%) of the classes were 
not bimodal, and that at most 323 (42%) classes could be 
bimodal.

Hartigan’s Dip Test. Hartigan’s Dip Test is a test for test-
ing whether data is multimodal (bimodal, trimodal, etc.). It 
looks at whether there is a “dip” in between the possible 
means and how deep the “dip” is (essentially: whether there 
is a concave-up section in the distribution). We applied 
Hartigan’s Dip Test to the 323 classes that had a kurtosis 
less than 3. We chose to apply the test only to these 323 
classes rather than the full 778 set in order to reduce the 
likelihood of false positives. For Hartigan’s Dip Test, the 
null hypothesis is that the population is unimodal. As such, 
our null hypothesis for each of the 323 tests was that a given 
class is unimodal.

Results of the Dip Test. Of the 323 classes that had a kurto-
sis below three, 45 classes yielded a p value from Hartigan’s 
Dip Test that was below our α value of 0.05. This is 13.9% of 
all the classes on which we ran Hartigan’s Dip Test, or 5.8% 
of all the classes in our data set.

We chose the standard α value of 0.05. This means that if 
the null hypothesis is true (unimodal), the chance of a false 
null hypothesis rejection is 5%.4 If the null hypothesis is 
false (multimodal), the chance of a false null hypothesis 
rejection is 0%, because we cannot falsely reject a false null 
hypothesis.4 Until it is known whether the null hypothesis is 
true or not, the chance of a false positive lies between 0% 
and 5%.a4

It could be the case that all 45 classes where we can reject 
the null hypothesis are indeed multimodal. But also given 
the noisiness of grading, ceiling effects, and small sample 
sizes, it could still be the case that all of these 45 classes are 
indeed unimodal.4

Although we cannot give conclusive determinations on a 
given null hypothesis test, the results here do provide infor-
mation. Even in the unlikely case that all 45 of these classes 
are indeed multimodal, we see that multimodal distribu-
tions are far from being typical.b
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Figure 1. The six histograms shown to participants, all of which were generated using GNU R’s rnorm function. A ceiling of 100% was used, 
which is most evident in Distribution 6. Each generated distribution had 100 points, and was generated with an average of 60 and standard 
deviation of 5 and displayed as a histogram with bins of size 10.

a  To give the reader a sense of the reliability of Hartigan’s Dip Test, we gen-
erated 100,000 distributions with R’s rnorm with n=100, µ=60, and σ=5. A 
total of 133 distributions (1.3%) were tested as multimodal per Dip Test. 
This gives us some indication that false positives will occur with the test, but 
likely less than 5.8%.
b  Many people have asked whether first-year classes are more likely to be multi-
modal than upper-level classes. Given how few classes passed the test of multi-
modality, we do not have sufficient data one way or the other to properly evaluate 
this. More data and replication at other universities would be needed to properly 
test if multimodal distributions occur more often in lower-level courses.
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interpretation is also not alone: our results support Lister’s 
argument that CS grades are generally not bimodal.

We invite readers to replicate our findings at other insti
tutions.c The code to replicate the analysis is available 
online at https://github.com/patitsas/bimodality.

4. STUDY 2: HUMAN INTERPRETATION OF  
DISTRIBUTIONS
So if CS grades are rarely bimodal, why does the belief in 
bimodality persist? An insight came one day when generat-
ing some random normal distributions in R: with only 100 
data points, the resulting histogram often had more than 
one peak and could be easily erroneously perceived as 
“bimodal”. A typical “large class” does not have a large 
enough sample size to consistently provide a smooth curve. 
Indeed, many of the distributions produced by R’s rnorm 
looked very much like the grade distributions we had seen in 
our own classes and called “bimodal.”

Interested in whether instructor perceptions affect the 
interpretation of noisy distributions, we designed an experi-
ment wherein participants are presented with histograms of 
distributions produced by R’s rnorm function, and asked to 
categorize the distribution (normal, bimodal, uniform, etc.). 
We initially had two research questions:

1.  Do CS instructors who believe in innate ability catego-
rize more noisy distributions as bimodal?

2.  If we prime participants that CS distributions are com-
monly thought to be bimodal, are they then more likely 
to see bimodal distributions in the noise?

Once we analyzed our data for those two research ques-
tions, a third research question arose:

3.  If instructors label noisy distributions as bimodal, are 
they more likely to agree with the idea of innate CS 
ability? (i.e., is there a possible feedback loop between 
looking at distributions and instructors’ beliefs?)

4.1. Experimental design
A difficulty in studies looking at priming effects is that you 
cannot state the purpose of the study in the consent form. If 
you do, then you are priming participants, even the partici-
pants you want in your control group. To disguise our study, 
we presented it as one asking people how often they saw 
various distribution shapes in their own classes.

We presented each participant with the six histograms as 
shown in Figure 1, all of which we generated using R’s 
rnorm function. We generated a few dozen histograms and 
selected the six histograms from that pool: one to be clearly 
normal (distribution 1), one that was mildly skewed as 
though students who were failing were pushed up to 50% (dis-
tribution 5), one where the ceiling effect was visible (distri-
bution 6), and three noisy distributions which had multiple 
peaks (distributions 2–4).

We asked each participant whether they saw this shape of 

3.2. Testing for normality
A variety of null hypothesis tests, such as Anderson-
Darling, Shapiro-Wilk, and Pearson’s chi-squared test 
determine whether a dataset is normal. We chose Shapiro-
Wilk, because it has been found to have the highest statis-
tical power.21

Shapiro-Wilk test. For the Shapiro-Wilk test, the null 
hypothesis is that the population is normally distributed. So, if 
p < α, we can reject the null hypothesis and have evidence that 
the population is not normally distributed. We could reject the 
null hypothesis for 106 classes. This indicates that 13.6% of the 
classes in the data set are not normally distributed. As with the 
results of Hartigan’s Dip Test, this does not mean that the null 
hypothesis is necessarily false in these cases. There are many 
reasons a distribution could not be normal: for example, it 
could be too skewed, it could be the wrong shape (e.g., triangu-
lar and uniform), or it could be multimodal.

It is worth noting that of the 45 classes where we rejected 
the null hypothesis that they were unimodal, for 44 of these 
classes we also rejected the null hypothesis that they were 
not-normal. As such, 44 of the 106 (41.5%) of the classes that 
were tested as being not-normal were also tested as being 
multimodal.

For the 86.4% of classes where we failed to reject the null 
hypothesis, we cannot guarantee that they are actually nor-
mal (type II error). To give an estimate of how many are actu-
ally normal, we bootstrapped a likely beta value. This yielded 
an estimated false negative rate of 1.48%.

From our data, we estimate that 85.1% of the final grades 
in UBC’s CS classes are normally distributed. This indicates 
that grades from a computer science class are typically 
normal—not bimodal.

Skewness. Although most of the distributions appear to 
be normally distributed, it is worth noting that the aver-
age skewness of all the distributions is –0.33, whereas a 
normal distribution should have a skewness of zero. If 
we only consider the distributions whose test results 
indicated normality, the average skewness is –0.13. This 
provides some sanity checking on our normality testing: 
the “normal” distributions are not particularly skewed. 
For the classes where we rejected the null hypothesis of 
normality (i.e., probably not normal), the average skew-
ness was higher. Likely, this is why many of these classes 
were indicated by Shapiro-Wilk as not normal. Higher 
skewness could also be a result of the ceiling effect in 
grade distributions.

3.3. Discussion
We only examined final grades: our analysis did not include 
term grades. And as grades only came from one institution, 
one may wonder about generalizability. We tried to acquire 
grade distributions from other institutions, but generally 
found it difficult to gather the same scale of data. What 
stood out for us is that our colleagues (both at UBC and else-
where) would routinely assert that their CS grades are 
bimodal, and our analysis gives evidence to the contrary. 
Although we cannot assert from this analysis that every uni-
versity has the same distributions as UBC, the large scale of 
data both in numbers and time-span is compelling. Our 

c  Since the original ICER publication, our findings have been replicated at a 
university in the United States.2
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distribution in their own classes (“very often” to “never” on a 
Likert scale), and how they would categorize the distribution 
(normal, bimodal, multimodal, uniform, and others). We 
randomly assigned participants to one of two treatments:

Treatment 0: participants were asked whether they 
agreed that CS ability is innate, then asked to categorize 
the distributions, and were not being primed to think 
about bimodality.

Treatment 1: participants were primed to think about the 
common-held belief about CS grade distributions, before 
they saw the distributions; after that, we asked whether they 
agreed that CS ability is innate.

The survey’s five pages are described in Table 1. For each 
question, we created a shorthand label, shown in sans-serif, 
for use in our analysis.

Because so many of the potential participants were our 
colleagues, we deliberately did not collect names and iden-
tify information about participants. We did not want to 
know who was or was not a participant, nor how they 
responded to the survey.

As a courtesy, we offered participants the option of 
having their email recorded on a separate platform if 
they wanted us to follow up with them about the results 
of the study.

We did not look at this email list until after our analysis 
was complete.

4.2. Participants
We recruited 60 CS instructors, mostly from the SIGCSE 
members’ list. Some participants were recruited from other 
online CS education communities, and some were recruited 
at ICER 2015. Fifty-three participants completed every ques-
tion on the survey; twenty-eight were in Treatment 0 (the 
nonprimed group), and twenty-five were in Treatment 1 (the 

primed group). The participants who had provided their 
emails for follow-up purposes were debriefed. As fewer than 
half of the participants had provided their email, we posted 
open debriefing statements to the online communities 
where we had recruited participants.

4.3. Results
For each participant, we computed a value we call “seeing-
bimodality,” which is how many of the six distributions the 
participant had categorized as bimodal or multimodal. In 
our data, seeing-bimodality ranged from 0 to 5.

Regression on seeing-bimodality. We wanted to see if 
seeing-bimodality could be predicted by participants’ responses 
to our questions. The regression we performed was to model 
seeing-bimodality as a function of innately-predisposed,  
all-­succeed, look-histo, and look-letter (shorthand names from 
Table 1).

When visualizing the results, we noticed that the rela-
tionship between seeing-bimodality and the Likert questions 
varied between the two treatments. As a nonparametric 
equivalent of ANCOVA, we performed an ordinal logistic 
regression on the two treatments separately using the 
polr function from R’s MASS library, and then used the 
Anova function from the car package to compare the two. 
This allowed us not only to test whether there were relation-
ships between seeing-bimodality and the Likert questions, 
but to see if these relationships were different for the two 
treatments. This approach required computing 28 p values. 
To reduce the chance of false positives from using multiple 
statistical tests, we applied a Šidák correction, which 
reduced our α level to 0.002 for this section of our analysis.

In both our regressions on Treatment 0 and on Treatment 1, 
we found a significant relationship between seeing-­bimodality 
and participants’ responses to the questions related to innate 
ability (all-succeed and innately predisposed).d

We then looked to see if this relationship was stronger in 
one treatment than the other. In both questions about 
innate ability, the effect was significantly stronger in the 
treatment where subjects were primed to think about CS 
grades being bimodal, as shown in Table 2.

Both regressions also revealed a statistically significant 
relationship between seeing-bimodality and how often partici-
pants reported looking at histograms of their grades (look-
histo). This relationship was not statistically significantly 
different between the two treatment groups.

Perhaps unsurprisingly, there was a strong negative 

Table 2. Results of the Anova of the regressions on the two  
treatments; that is, does the relationship between a given factor and 
seeing-bimodality differ between the two treatments?

 LR Chisq Df Signif?

innately-predisposed
all-succeed
look-histo
look-letter

11.0
14.8

4.1
6.1

2
3
4
4

yes
yes
no
no

d  Regression tables are provided in the original ICER publication, and are 
omitted due to page limitations.

Table 1. The pages of the survey.

1. � Questions about how large their typical class was (“class-size”) and 
how long they had been teaching (“years-experience”).

2. � A priming question: ‘It is a commonly held belief that CS grade 
distributions are bimodal. Do you find this to be the case in your  
teaching?’ (“have-bimodal”)

3.  Questions on how often they look at their grade distributions:
• � ‘When teaching, how often do you look at histograms of your 

students’ grades? (This applies both to term work and final grades.)’ 
(“look-histo”)

• � ‘How often do you look at how many students fall into each letter 
category (A, B, etc.)? (This applies both to term work and final 
grades.)’ (“look-letter”)

4. � Six histograms, all generated with GNU R’s rnorm, shown in Figure 1. 
For each histogram, we asked two questions:
• � ‘How often do you see the shape of [this distribution] in your 

classes?’
•  ‘What sort of distribution would you describe [this distribution] as?’

5. � Likert-style questions on innate ability (5 points, Strongly Agree to 
Strongly Disagree):
• � Nearly everyone is capable of succeeding in computer science if they 

work at it. (“all-succeed”)
• � Some students are innately predisposed to do better at CS than 

others. (“innately-predisposed”)

Pages 2 and 5 were swapped for a random half of the participants. We chose the  
all-succeed question because it had been used previously in the literature.
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Geek Gene Hypothesis. We consider our evidence weak 
because our study was underpowered, and caution should 
be taken in interpreting the lack of significance in the sec-
ond treatment.

We were initially surprised that regularly looking at 
histograms of grades was associated with a higher 
score for seeing-­bimodality. This led us to add our third 
research question, based on the idea that it could be 
that the more often you look at your grades, the more it 
solidifies your conception of what your grades are like. 
This supports our observation that categorizing distri-
butions as bimodal increases belief in innate ability. 
System justification theory explains how once you are 
forced to take a position on a subject, you are more likely 
to believe and defend it.11 Our approach to priming—
stating that it is a commonly held belief that CS grade dis-
tributions are bimodal—may have strengthened our 
participants’ beliefs about the bimodality of CS grades. 
Because the survey presents us, the researchers, as author-
ity figures, and we imply that grades may be bimodal, 
some participants could assume it to be true because of 
our endorsement.

When we piloted our survey, some participants opined 
that they believed that some students were predisposed 
because of prior experience, rather than inherent 
brilliance.

We did not have a representative sample of CS educa-
tors. The educators who participate in CS education com-
munities are generally much more invested in their 
teaching than their peers who do not. Furthermore, some 
of our participants may be familiar with Ahadi and Lister1, 
which could have influenced their responses. But we 
would expect the SIGCSE community to be less inclined 
to believe in innate ability than their non-SIGCSE peers. 
We still had enough participants who agreed with the 
hypothesis for us to conduct our analysis. Future work is 
needed to replicate our findings with a more representa-
tive sample of CS educators.

Supporting literature. Our findings agree with the psy-
chology literature: people’s biases affect their decision-
making more when they are judging more ambiguous 
information.10 For example, Heilman et al. found that 
resumes of extremely qualified candidates were likely to 
be judged worthy of a salary increase regardless of the 
gender listed on the resume—but for resumes of ambigu-
ously qualified candidates, resumes with male names were 
more likely to be viewed positively than those with female 
names.10 Eyesnck et al. studied the interpretation of writ-
ten sentences as either threatening or nonthreatening by 
people who have anxiety and by a control group.3 They 
found that unambiguously threatening or nonthreaten-
ing sentences were interpreted similarly between groups, 
but participants with anxiety were more likely than con-
trols to label ambiguous sentences as threatening. Visual 
information is also subject to this phenomenon: Payne et 
al. showed participants a series of photos of people hold-
ing either guns or ambiguous objects, and participants 
were more likely to identify the ambiguous object as a gun 
if it was held by a black person.19

correlation between all-succeed and innately predisposed. 
Those who felt there was an innate predisposition to do well 
in CS also felt that not everyone could succeed in the field.

Regression on all-succeed. After finding a one-way 
relationship between grade perceptions and the innate-
ness belief, we wanted to see if there was any evidence of a 
feedback loop between the two. Because all-succeed and 
innately predisposed correlated so highly, we found they 
were interchangeable as measures of belief in innate abil-
ity. As logistic regression involves only one dependent vari-
able, we had to pick one of the two to use. We chose to do 
this analysis with all-succeed because the question item 
had been used in another study.14

Recall that our study was set up so that a random half 
of the participants categorized distributions and then 
were asked about innate ability (Treatment 1), whereas 
the other half were asked about innate ability and then 
categorized the distributions (Treatment 0). If there is a 
feedback loop here, we would expect that seeing-bimodality 
would predict all-succeed in Treatment 1, but not in 
Treatment 0.

Guidelines for statistical power in logistic regression sug-
gest that an α level of 0.05 requires 10–20 data points per 
independent variable in your model.16 Because this part of 
the analysis requires the statistical power to reject a null 
hypothesis, we modeled all-succeed as only a function of 
seeing-bimodality, and set α = 0.05.

For Treatment 1, we found that seeing-bimodality was a sta-
tistically significant predictor of all-succeed. In Treatment 0, 
it was not. This indicates that there is a feedback loop 
between categorizing distributions as bimodal and agree-
ment with the idea of innate ability. We hence have observed 
evidence for the relationships illustrated in Figures 2 and 3.

4.4. Discussion
With regard to the feedback loop between seeing-bimodality 
and all-succeed, we have some weak evidence that catego-
rizing distributions as bimodal increases belief in the 

are told that
CS grades are

bimodal

categorizes
distributions are

bimodal

belief in
Geek Gene
Hypothesis

+

+

+

Figure 2. Individual-level feedback loop leading individuals to 
categorize ambiguous distributions as bimodal.

number of
people who
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Geek Gene
Hypothesis

number of
people who
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distributions as
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+

+ + +

number of
people told
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Figure 3. Social-level feedback loops leading individuals to 
categorize ambiguous distributions as bimodal.
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this is a common and inherent phenomenon in CS classes. 
The perception of bimodal grades provides evidence to the 
Geek Gene narrative that some students “have it” and 
some do not. And when new educators who have been 
primed to see bimodality then begin teaching and do not 
see all their students learning, these new educators can 
then see this as evidence of the Geek Gene. The reproduc-
tion of the Geek Gene Hypothesis is hence social in nature.

5.2. The “Geek Gene” is an equity issue
Debunking the “Geek Gene” is also important for equity 
reasons. Recent studies have found that academic disci-
plines in which “brilliance” is seen as necessary for success 
have less gender diversity.13 Looking at the history of sci-
ence, women and people of color were long denied entry 
and acknowledgment in science because they were seen 
as lacking the “brilliance” needed to do science.23 If com-
puting ability is viewed as being the result of a “Geek 
Gene,” then educators may use this as a reason not to 
teach students who they perceive as lacking this “gene.” 
Similarly, they could lower expectations of these 
groups and encourage them less—which is troubling 
given evidence that teacher expectations have an effect on 
student performance.22

6. CONCLUSION
Our analysis of one institution’s CS grades indicates that 
although bimodal grade distributions can be found, they 
are far from typical. Much more commonly, grade distri-
butions are normal (85.1% of cases) or highly skewed uni-
modal distributions. Our psychology experiment found 
that participants who were more likely to label ambigu-
ous distributions as bimodal were also more likely to 
report a belief in an innate ability to succeed in CS. This 
suggests that instructor beliefs play a role in the percep-
tion of bimodality.

Priming participants to think about the common per-
ception of bimodal grades also led to participants being 
more likely to label ambiguous distributions as bimodal. 
This suggests that confirmation bias plays a role in the 
belief that bimodal grades are typical.

Given that the belief that CS ability is innate is wide-
spread among CS educators, there is likely a social ele-
ment to the confirmation bias. This belief in bimodality 
appears related to the belief in innate ability, which in 
turn has been implicated in the under-representation of 
women and minorities in computing. We encourage edu-
cators reading this paper to take time to analyze the 
grades in their own classes, and bring the same level of 
rigor and skepticism we would use in our research to 
understand our own teaching.
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Furthermore, belief can affect judgment regardless of 
ambiguity. For example, Kahan et al. found that partici-
pants were more likely to get a math problem incorrect if 
the correct result would disagree with their political 
beliefs.12 It is hence plausible that a computer scientist 
who believes in the Geek Gene Hypothesis could look at 
an unambiguously unimodal distribution and still view it 
as bimodal.

5. THE GEEK GENE HYPOTHESIS  
AS A SOCIAL DEFENSE
Once again, our findings support Lister’s hypothesis that 
CS grades are generally not bimodal and this perception 
stems from instructors expecting to find bimodal grades 
due to a belief in the Geek Gene Hypothesis. We now go a 
step further and argue that the perception of bimodality 
is a social defense in the CS education community.

In sociology and social psychology, a “social defense is 
a set of organizational arrangements, including struc-
tures, work routines, and narratives, that functions to 
protect members from having to confront disturbing 
emotions stemming from internal psychological conflicts 
produced by the nature of the work”.17

5.1. Social defenses in teaching
Guzdial reports that teachers generally have a high level of 
self-efficacy (great confidence in their teaching ability) at the 
start of their career. This then plummets as they face the 
realities of classroom teaching but slowly returns with time.9 
Teacher self-efficacy is not necessarily tied to teaching abil-
ity: university educators often get little meaningful feedback 
on how their students are learning, given their large class 
sizes and lecture-based pedagogies.9

Guzdial notes that if an individual university-level CS 
educator has high self-efficacy, and sees evidence of stu-
dents not learning, then it is rational for them to believe that 
the problem lies with the students and that the problem is 
innate to them—that is, beyond the ability of the teacher to 
influence.9 Compounding this, Sahami and Piech have 
observed that CS educators are more aware of their top and 
bottom students than they are of their average students, giv-
ing educators a biased perception of their students’ abili-
ties.24 Guzdial argues that CS educators have poor results, 
because we so frequently use ineffective teaching methods.7 
Zingaro et al. suggest that not only do CS educators fre-
quently use ineffective pedagogies, they also frequently use 
ineffective assessment tools.28, 20

We theorize that the Geek Gene Hypothesis is a social 
defense: it is easier for computer science educators to blame 
innate qualities of their students for a lack of learning than 
it is for the educators to come to terms with the ineffective-
ness of their teaching.

A social defense is a phenomenon on a social scale, in 
contrast to Guzdial’s observation about individual teach-
ers. When numerous educators bond over how their stu-
dents just “do not have it,” it allows for the Geek Gene 
hypothesis to go from one individual’s suspicion to a 
social narrative. And as bimodal grade distributions 
sometimes do occur, those cases are used to argue that 
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