
A Propositional Proof System for Log Space

Steven Perron

Department of Computer Science, University of Toronto
sperron@cs.toronto.edu

Abstract. The proof system G∗0 of the quantified propositional calcu-
lus corresponds to NC1, and G∗1 corresponds to P , but no formula-based
proof system that corresponds log space reasoning has ever been devel-
oped. This paper does this by developing GL∗.
We begin by defining a class ΣCNF (2) of quantified formulas that can be
evaluated in log space. Then GL∗ is defined as G∗1 with cuts restricted
to ΣCNF (2) formulas and no cut formula that is not quantifier free
contains a non-parameter free variable.
To show that GL∗ is strong enough to capture log space reasoning, we
translate theorems of ΣB

0 -rec into a family of tautologies that have poly-
nomial size GL∗ proofs. ΣB

0 -rec is a theory of bounded arithmetic that
is known to correspond to log space. To do the translation, we find an
appropriate axiomatization of ΣB

0 -rec, and put ΣB
0 -rec proofs into a new

normal form.
To show that GL∗ is not too strong, we prove the soundness of GL∗ in
such a way that it can be formalized in ΣB

0 -rec. This is done by giving
a log space algorithm that witnesses GL∗ proofs.

1 Introduction

Recently there has been lots of research looking into the connection between
computational complexity, bounded arithmetic, and propositional proof com-
plexity. A recent survey on this topic can be found at [1]. In this paper, we give
a method of restricting the proof system G∗ to get a proof system GL∗, which
corresponds to log space. The proof system G∗ is a tree-like proof system for
the quantified propositional calculus based on Gentzen’s LK [2]. This affirms the
belief of Cook that there exists a formula-based proof system that corresponds
to log space [1]. Before this the only proof system for log space was based on liar
games [3], and it has never been well developed.

The definition of GL∗ is similar to the definition of G∗i : it is obtain from G∗ by
restricting cuts. We restrict cuts to the class of formulas ΣCNF (2). This class of
formulas is closely related to CNF (2) formulas. These are CNF formulas where
no variable appears more than twice.

Another attempt to capture reasoning between NC1 and P resorted to
putting a bound on the depth of the proof and the number of cuts along a
branch [4], but it is not obvious how to capture other complexity classes using
this type of restriction. In contrast to that, it seems plausible that a proof system
for NL could be defined in the same spirit as GL∗.

The rest of the paper is organized as follows. In the next section, we define
the ΣCNF (2) formulas and the proof system GL∗, and we give the reason for
the restrictions on the cut formulas. Section 3 is devoted to translating theorems
of ΣB

0 -rec into tautologies with polynomial size GL∗ proofs. ΣB
0 -rec is a theory

of bounded arithmetic introduced by Zambella [12] that is known to correspond
to log space [1]. This proves GL∗ is strong enough to capture log space reasoning.
In section 4, we prove in ΣB

0 -rec that GL∗ is sound. This is sometimes called
the reflection principle. This tells us that GL∗ does not capture reasoning for a
higher complexity class.

This paper is based on my Masters thesis [9], where more details can be
found.

2 The Proof System

The proof system PK is the Gentzen-style sequent calculus for propositional
logic [5, 6]. The initial sequents are ⊥ →,→ >, and A → A, for any propositional
formula A. The rules of inference include structural rules, which are weakening,
contraction, and exchange; propositional rules, which are used to add propo-
sitional connective to formulas in the sequents; and the cut rule, which infers
Γ → ∆ from A,Γ → ∆ and Γ → ∆,A. We can then extend PK to the proof
system G by adding rules for quantifiers over propositional variables [7]. Anytime
you deal with quantifiers, you will have problems with the substituting terms
or, in this case, formulas for variables. To help avoid these problems, we use the
following convention.

Notation 1 In propositional formulas, all bound variables will be z, z1, z2, . . .
and will be called z-variables. The free variables will be x, x1, x2 . . . and will be
called x-variables.

This way we know, x-variables are never quantified. The quantifier rules are

A(x), Γ → ∆∃-left ∃zA(z), Γ → ∆

Γ → ∆, A(B)∃-right
Γ → ∆, ∃zA(z)

Γ → ∆,A(x)∀-left
Γ → ∆, ∀zA(z)

A(B), Γ → ∆∀-right ∀zA(z), Γ → ∆

where x does not appear in the bottom sequent of the ∃-left and ∀-right rules,
and B is a Σq

0 formula that does not mention any z-variable. The Σq
0 formulas

are propositional formulas that do not contain any quantifiers. In general, the
Σq

i formulas are quantified propositional formulas in prenex form with at most
i − 1 quantifier alternations, beginning with ∃ on the outside. In these rules, x
is called the eigenvariable and B is called the target formula. The proof system

G∗ is G restricted to tree-like proofs. The fragment Gi is G with cuts restricted
to Σq

i formulas, and G∗i is Gi restricted to tree-like proofs [7].
These proof systems have been extensively studied. In [2], Krajicek and Pud-

lak showed a connection between Gi and Buss’s theories T i
2 for i > 0. This result

was shown for a different definition of Gi, but the result still holds [7]. Later
a connection between G∗i and Si

2 [8] was found. With the connection between
these theories and the polynomial-time hierarchy, we get an indirect connection
between the polynomial-time hierarchy and the proof systems. In particular, G∗1
is connected to P . Later the proof system G∗0 was shown to be directly connected
to NC1, and connections to the theory V NC1 were also considered. Since our
proof system is going to correspond to log space, it must be between G∗0 and
G∗1; the cut formulas must be some subset of Σq

1 formulas. This subset is the
ΣCNF (2) formulas.

Definition 1 The set of formulas ΣCNF (2) is the smallest set

1. containing Σq
0 ,

2. containing every formula ∃z, φ(z,x) where (1) φ is a quantifier-free CNF
formula

∧m
i=1 Ci and (2) existence of a z-literal l in Ci and Cj, i 6= j,

implies existence of an x-variable x such that x ∈ Ci and ¬x ∈ Cj or vice
versa, and

3. closed under substitution of Σq
0 formulas that contain only x-variables for

x-variables.

Then, GL∗ is defined as follows.

Definition 2 Given a proof of a sequent Γ → ∆, a variable is a parameter
variable if it appears free in Γ → ∆.

Definition 3 GL∗ is the propositional proof system G∗ with cuts restricted to
ΣCNF (2) formulas in which no cut formula that is not Σq

0 contains a non-
parameter free variable.

We chose this class of formulas because we are able to evaluate ΣCNF (2) for-
mulas, given an assignment to the free variables. Moreover, this problem is log
space complete.

Lemma 1 ([9], Lemma 4.2.2). Evaluating ΣCNF (2) formulas is log space
complete.

This is an easy corollary to a theorem in [10], where Johannsen proved that the
satisfiability problem for CNF (2) formulas, SAT (2), is log space complete. A
CNF (2) formula is a CNF formula where no variable appears more than twice.
In Section 4, we will show how to find the assignment to the quantified variables
in log space that satisfies the formula whenever possible.

The restriction on the free variables in cut formulas might seem unnatu-
ral, but it is necessary. Let H∗ be the proof system G∗ with cuts restricted to
ΣCNF (2) formulas and no restriction on the free variables. At first, we tried

to show that H∗ captured log space reasoning, but we found that it p-simulates
G∗1 proofs of Σq

1 formulas.
At a high level, H∗ proves there exists an output to a circuit by proving that

there exists an output to gate i, given the values for the inputs and the output
of the first i − 1 gates. This can be expressed as a ΣCNF (2) formula. Then,
with repeated cutting, we can prove there exists an output to the ciruit given
the values of the inputs. Since H∗ allows non-parameter variables in the cut
formulas, the cute can be done. This is a problem since determining the output
of a circuit is P -complete. Using this idea, we are able to prove the following
theorem.

Theorem 1. H∗ p-simulates G∗1 for Σq
1 formulas.

A complete proof can be found in [9].

3 Propositional Translations

This section is motivated by results in [11]. In that paper, Cook showed that the-
orems of the equational theory PV can be translated into a family of tautologies
that have polynomial size extended Frege proofs. We will show that theorems of
ΣB

0 -rec can be translated into a family of tautologies that have polynomial size
GL∗ proofs. This tells us that GL∗ captures log space reasoning in the same way
extended Frege captures polynomial time reasoning.

In this paper, the theories will be two sorted. Numbers are the first sort.
We use a, b, x, y, z as number variables, and they are intended to range over the
natural numbers. Binary strings (or finite sets of numbers) are the second sort.
We use X, Y, Z as string variables, and they are intended to be strings of 0’s and
1’s, with leading 0’s removed.

The standard language is L2
A = [0, 1, +, ·, ||; =1, =2, ()]. The constants, 0 and

1, and the binary functions, + and ·, have their usual meaning. The final function
|X| returns to size of the string X (or the least upper bound of the finite set X).
The predicates =1 and =2 are equality between numbers and string, respectively.
The predicate ≤ is the usual inequality between two numbers. The final predicate
is used to access the bits of X. So, X(b) is true if the bth bit of X is 1, and false
otherwise.

In two sorted bounded arithmetic, strings are the important sort. This is why
we define classes of formula based on string quantifiers. The class ΣB

0 of formulas
is the set of L2

A formulas with no string quantifiers and all number quantifiers are
bounded. That is, the number quantifiers are of the form ∃x ≤ b. The class ΣB

1

of formulas is the class of formulas with an initial block of bounded existential
string quantifiers followed by a ΣB

0 formula. A bounded string quantifier is of
the form ∃Z ≤ bφ, which means ∃Z, |Z| ≤ b∧φ. The class Σ1

1 is the same as ΣB
1

except the string quantifiers do not have to be bounded.
Given a ΣB

1 formula φ(x, X) over the language L2
A, we want to translate

it into a family of propositional formulas ||φ(x, X)||[n], where the sizes of the
formulas are bounded by a polynomial in n and the values assigned to x. We

use the translation described in [1, 7]. It is a modification of the Paris-Wilkie
translation (see [1]).

The first step is to substitute constant values for all the number variables x.
For now we assume φ has no free number variables. The formula ||φ(X)||[n] is
meant to be a formula that says φ(X) is true whenever |Xi| = ni for every string
in X and the number variables are equal to the constants that replaced them.
Then if φ(X) is true for all X, then ||φ(X)||[n] is a tautology for all values for
n. Note that any term t that appears in φ can be evaluated immediately. This
is because there are no number variables and the size of each string variable is
known. So we will let val(t(n)) be the value of the term. The variables n will
often be omitted since they are understood. The free variables in the proposi-
tional formula will be pXi

j for j < ni− 1. The variable pXi
j is meant to represent

the value of the jth bit of Xi; we know that the nith bit is 1, and for j > ni, we
know the jth bit is 0. The definition proceeds by structural induction on φ.

Suppose φ is an atomic formula. Then it has one of the following forms: s = t,
s < t, Xi(t), or one of the trivial formulas ⊥ and >, for terms s and t. In the first
case, we define ||φ(X)||[n] as the formula >, if val(s) = val(t), and ⊥, otherwise.
A similar construction is done for s < t. If φ is one of the trivial formulas, then
||φ(X)||[n] is the same trivial formula. So now suppose φ(X) =syn Xi(t). Let
j = val(t). Then the translation is defined as follows:

||φ(X)||[n] =syn

pXi
j if j < ni − 1
> if j = ni − 1
⊥ if j > ni − 1

Now for the inductive part of the definition. Suppose φ =syn α ∧ β. Then

||φ(X)||[n] =syn ||α(X)||[n] ∧ ||β(X)||[n].

When the connective is ∨ or ¬, the definition is similar. Let j = val(t). If the
outer most connective is a quantifier, then the translation is defined as

||∃y ≤ t, α(y, X)||[n] =syn

j∨

i=0

||α(i, X)||[n]

||∀y ≤ t, α(y, X)||[n] =syn

j∧

i=0

||α(i, X)||[n]

||∃Y ≤ t, α(Y, X)||[n] =syn ∃pY
0 , . . . , ∃pY

j−2,

j∨

i=0

||α(Y, X)||[i, n]

This completes the definition. Note that ∃Y ≤ b means there exists a string with
size at most b.

3.1 The Theory V L′

There have been a number of theories that capture log space reasoning. We
will use ΣB

0 -rec [12]. The theory ΣB
0 -rec is axiomatized by the axioms of V 0

(explained below) plus the X-rec axiom below. This formula says that, if every
vertex in the graph with nodes {0, . . . , a} and edge relation X(i, j) has out-degree
at least 1, then there exists a path of length b.

[∀x ≤ a∃y ≤ aX(x, y)] ⊃ ∃Z, ∀w ≤ b∃!x ≤ aZ(w, x)
∧ ∀w < b∀x ≤ a∀y ≤ a[Z(w, x) ∧ Z(w + 1, y) ⊃ X(x, y)].

(X-rec)

In this formula, ∃!xφ means “there exists a unique x such that φ is true.” The
theory V 0 has axioms that define addition, multiplication, the inequalities, and
the size of a string. In addition, V 0 has the ΣB

0 -COMP axiom:

∃Z ≤ a∀i < a, Z(i) ⇐⇒ φ(i),

where φ is a ΣB
0 formula that does not mention Z. V 0 is known to correspond

to AC0. See [1, 6] for details on V 0.
We know ΣB

0 -rec corresponds to log space because of the Σ1
1 -definability

theorem below.

Theorem 2. A function is Σ1
1 -definable in ΣB

0 -rec if and only if it is a log space
function.

See [12, 9] for a proof.
We want to reformulate the axioms of ΣB

0 -rec so they translate into
ΣCNF (2) formulas. With the exception of ΣB

0 -COMP, the axioms of V 0 are
ΣB

0 , so they translate into Σq
0 formulas, which are ΣCNF (2). This means we

only need to consider ΣB
0 -COMP and X-rec. We are not going to worry about

ΣB
0 -COMP; we will handle this axiom the same way Cook and Morioka did in

[7]. That is, if the proof system is asked to cut the translation of an instance of
the ΣB

0 -COMP axiom, then the propositional proof is changed so that the cut
becomes

∧t
i=0[||φ(i)|| ⇐⇒ ||φ(i)||], which is ΣCNF (2). To take care of X-rec,

we will define a new theory that is equivalent to ΣB
0 -rec by replacing the X-rec

axiom.
Let ΣB

0 -edge-rec be the axiom scheme

∃Z ≤ 1 + 〈b, a, a〉[ρ1 ∧ ρ2 ∧ ρ3 ∧ ρ4 ∧ ρ5 ∧ ρ6 ∧ ρ7 ∧ ρ8],

where

ρ1 =syn∀j < a,¬Z(0, 0, j) ∨ φ(0, j) ∨ ∃l < jφ(0, l))
ρ2 =syn∀j ≤ a∀k < j,¬Z(0, 0, j) ∨ ¬φ(0, k) ∨ ∃l < kφ(0, l))
ρ3 =syn∀i ≤ a∀j ≤ a, i = 0 ∨ ¬Z(0, i, j)
ρ4 =syn∀w < b∀i ≤ a∀j ≤ a,¬Z(w + 1, i, j)

∨ ∃h ≤ aZ(w, h, i) ∨ ¬φ(i, j) ∨ ∃l < jφ(i, l)
ρ5 =syn∀w < b∀i ≤ a∀j < a,¬Z(w + 1, i, j) ∨ φ(i, j) ∨ ∃l < jφ(i, l)
ρ6 =syn∀w < b∀i ≤ a∀j ≤ a∀k < j,¬Z(w + 1, i, j) ∨ ¬φ(i, k) ∨ ∃l < kφ(i, l)
ρ7 =syn∃i ≤ a∃j ≤ a, Z(b, i, j)
ρ8 =syn∀〈w, i, j〉 ≤ 〈b, a, a〉, [w > b ∨ i > a ∨ j > a] ⊃ ¬Z(w, i, j)

where φ(i, j) is a ΣB
0 formula that does not mention Z, but may have other free

variables. Informally this axiom says there exists a string Z that gives a pseudo-
path of length b in the graph with a nodes and edge relation φ(i, j). This path
starts at node 0. If (i, j) is an edge in this path, then j is the smallest number
with an edge from i to j, or j = a when there are no outgoing edges. Note that
the edge may not exists in the original graph when j = a. This is why we call is
a pseudo-path. If (i, j) is the wth edge in the path, then Z(w, i, j) is true, and
Z(w, i′, j′) is false for every other pair. It is not immediately obvious the axiom
says this, so we will look at it closer.

Let Z be a string that witnesses the axiom. We want to make sure Z is
the path described above. Looking at ρ3, we see the path starts at 0. Suppose
Z(0, 0, j) is true. We must show that j is the first node adjacent to 0. This follows
from ρ1, which guarantees φ(i, j) is true when j < a, and ρ2, which guarantees
φ(i, k) is false when k < j. A similar argument can be made with ρ5 and ρ6 to
show that every node is the smallest node adjacent to its predecessor. To make
sure the path is long enough, we have ρ7, which says there is a bth edge, and ρ4,
which says if there is a (w + 1)th edge there is a wth. As you may have noticed,
there are parts of this formula that semantically are not needed. For example,
the ∃l < jφ(0, l) in ρ1 is not needed. It is used to make sure the axiom translates
into a ΣCNF (2) formula. We add ρ8 to make sure there is a unique Z that
witnesses this axiom.

Notation 2 For simplicity, ψφ is the ΣB
0 part of the ΣB

0 -edge-rec axiom instan-
tiated with φ. Note this includes the bound on the size of Z. So the axiom can
be written as ∃Zψφ.

So now we define the theory V L′.

Definition 4 V L′ is the theory axiomatized by the axioms of V 0, the ΣB
0 -edge-

rec axioms, and Axiom (1). The language of V L′ is the language of V 0 plus a
string constant C with defining axiom

|C| = 0 (1)

We add the string constant to the language so we can put V L′ proofs in free
variable normal form (below). We do not use the constant for any other reason.
Also, in the translation, we can treat C a string variable with n = 0.

In [9], the author proved that V L′ and ΣB
0 -rec are equivalent. Since the X-

rec and ΣB
0 -edge-rec axioms are semantically similar this is not too difficult, but

to prove the ΣB
0 -edge-rec axiom from X-rec does require a trick used in [12] to

get the path to start at 0. This gives us the following lemma.

Lemma 2. The theory ΣB
0 -rec is equivalent to V L′.

So now we know that V L′ captures log space reasoning, and it does not capture
reasoning for a larger complexity class.

The next step is to be sure the translation of this axiom is a ΣCNF (2)
formula. This is done by a careful inspection of the formula and is left to the
reader.

Lemma 3. The formula ||∃Zψφ(a, b, Z)|| is a ΣCNF (2) formula.

3.2 Cut Variable Normal Form

In this section, we want to find a normal form for V L′ proofs that makes sure
the translation of V L′ proofs satisfy the variable restriction for GL∗. The normal
form we want is cut variable normal form (CVNF) and is defined as follows.

Definition 5 A formula φ(Y) is bit-dependent on Y if there is an atomic sub-
formula of φ of the form Y (t), for some term t.

Definition 6 A proof is in free variable normal form if every non-parameter
free variable y or Y that appears in the proof is used as an eigenvariable of an
inference exactly once, and every formula that contains y or Y appears before
that inference.

Definition 7 A cut in a proof is anchored if the cut formula is an instance of
an axiom.

Definition 8 A V L′ proof π is in cut variable normal form if π is (1) in free
variable normal form, (2) every cut with a non-ΣB

0 cut formula is anchored, and
(3) no cut formula that is an instance of the ΣB

0 -edge-rec axiom is bit-dependent
on a non-parameter free string variable.

It is known how to find a proof with the first two properties [6, 5], but, to
our knowledge, no property similar to the third has ever been considered.

The main theorem of this section is

Theorem 3. Suppose V L′ ` ∃Z ≤ tφ(Z) for some ΣB
0 formula φ. Then there

exists a V L′-proof π of ∃Z ≤ tφ(Z) such that π is in CVNF.

The proof of this theorem is the most technical in this paper. At a high
level, it amounts to showing ΣB

0 -edge-rec is closed under substitution of strings
defined by ΣB

0 -edge-rec and ΣB
0 -COMP. We begin with an anchored proof that

is in free variable normal. We want to change every cut that violates condition
(3) in the definition of CVNF. Consider the proof given in Figure 1. This is a

P

. . .
... . .

.

∃Zψφ(Y)(Z), γ(Y), Γ → ∆

.. .
... . .

.

γ(Y), Γ → ∆, ∃Zψφ(Y)(Z)

γ(Y), Γ → ∆

∃Y γ(Y), Γ → ∆

Fig. 1. Example of a proof that is not in CVNF

simple example of what can go wrong. The general case is handled in the same
way, so we will only consider this case.

Since all ΣB
1 cut formulas are anchored and the ∃Y γ(Y) must eventually be

cut, it is be an instance of ΣB
0 -COMP or ΣB

0 -edge-rec. The hard part is to prove
the following lemma.

Lemma 4. For any ΣB
0 formula φ(Y), there exist ΣB

0 formulas φ1 and φ2 such
that φ1 is not bit-dependent on Y and V 0 proves the sequent

γ(Y), ψφ1(Z), ∀i < t[Z ′(i) ⇐⇒ φ2(Z)] → ψφ(Y)(Z ′).

Proof sketch. This proof is divided into two cases. In the first case, we assume

γ(Y) =syn Y ≤ t∀i < t[Y (i) ⇐⇒ φ′(i)].

That is, it is an instance of ΣB
0 -COMP. We know Y must appear in that position

because it gets quantified. In this case, φ1 is φ with every atomic formula of the
form Y (s) replaced by s < t ∧ φ′(s), and φ2 is not needed.

For the second case, we assume γ(Y) =syn ψφ′(Y). In this case we use branch-
ing programs. We give a ΣB

0 description of a branching program BP1 that com-
putes Z ′ and a branching program BP2 that computes Y . BP1 at some point
branches on Y . So we construct BP3 by composing BP1 and BP2. Anytime BP1

needs to branch on Y it runs BP2 to see what it should do. The formula φ1 is
the ΣB

0 description of BP3. The formula φ2 represents the AC0 function that
extracts Z ′ from the run Z of BP3. We use branching programs because log
space can be defined in terms of branching programs.

Using this lemma, we are able to change the proof in Figure 1 into the proof
in Figure 2. In that proof, P ′ is the proof P with the rules that introduced ∃Z
ignored, and Q is an anchored V 0 proof, which we know exists by the lemma
above. This gives us a new proof of the same formula that still satisfies properties
(1) and (2) in Definition 8 and it contains one less cut that is bit-dependent on
Y , but it might be bit-dependent on different non-parameter variables. However,
if we do things in the correct order, we can repeat the transformation and,
eventually, we will get a proof that is in CV NF .

Using this manipulation, we prove Theorem 3.

Proof (Proof of Theorem 3). It would be nice to be able to simply say we can
repeatedly apply the manipulations above and eventually the proof will be in
CVNF, but this is not obvious. In the manipulation, if γ(Y) is bit-dependent
on a string variable other than Y , then the new ΣB

0 -edge-rec cut formula is bit-
dependent on that variable. This includes non-parameter string variables. So we
need to state our induction hypothesis more carefully.

Let Y1, . . . , Yn be all the non-parameter free string variables that appear
in π ordered such that the variable Yi is used as a eigenvariable before Yj for
i < j. This implies Yi does not appear in γ(Yj) in the manipulations above.
So now suppose no ΣB

0 -edge-rec cut formula is bit-dependent on the variables
Y1, . . . , Yk, for some k < n. Then we can manipulate π such that the same

P ′

. . .
... . .

.

ψφ(Y)(Z), γ(Y), Γ → ∆

Q

.. .
... . .

.

γ(Y), ψφ1(Z), τ(Z′) → ∆, ψφ(Y)(Z)

ψφ1(Z), τ(Z′), γ(Y), Γ → ∆

ψφ1(Z), ∃Z′τ(Z′), γ(Y), Γ → ∆

ψφ1(Z), ∃Z′τ(Z′), γ(Y), Γ → ∆ → ∃Z′τ(Z′)

ψφ1(Z), γ(Y), Γ → ∆

∃Zψφ1(Z), γ(Y), Γ → ∆

∃Zψφ1(Z), γ(Y), Γ → ∆ → ∃Zψφ1(Z)

γ(Y), Γ → ∆

∃Y γ(Y), Γ → ∆

Fig. 2. Modification of the proof in Figure 1. The formula τ(Z′) is used to replace
∀i < t[Z′(i) ⇐⇒ φ2(Z)]

holds for the variables Y1, . . . , Yk+1. To accomplish this, we simply manipulate
every ΣB

0 -edge-rec cut formula that is bit-dependent on Yk+1 as described above.
Since Y1, . . . , Yk cannot appear in γ(Yk+1), those variables will not violate the
condition. So by induction, we can get a proof that is in CVNF.

3.3 Translating Theorems of V L′

We are now prepared to prove the translation theorem. The proof is done by
induction on the length of the proof. For the base case, we need to prove the
translation of the axioms of V L′. Since every axiom except ΣB

0 -edge-rec is an
axiom of V NC1, we know those axioms have polynomial size G∗0 proofs [7] and,
therefore, polynomial size GL∗ proofs as well. Axiom (1) is easy to prove since
it translates to → >. We still need to show how to prove the ΣB

0 -edge-rec axiom
in GL∗. Recall that we write the axiom as ∃Zψφ(a, b, Z). Note that the axiom
does have a bound on Z, but it has been omitted since the specific bound is not
important.

Lemma 5. The formula ||∃Zψφ(a, b, Z)|| has a GL∗ proof of size p(a, b) for
some polynomial p.

Proof sketch. The proof is done by a brute force induction. We prove, in GL∗,
that, if there exists a pseudo-path of length b, then there exists a pseudo-path
of length b + 1. It is easy to prove there exists a pseudo-path of length 0. With
repeated cutting we get our final result. The entire path is quantified, so we do
not cut non-parameter free variables.

We now prove the main theorem of this section.

Theorem 4. Suppose V L′ proves ∃Z < tφ(x, X, Z). Then there are polynomial
size GL∗ proofs of ||∃Z < tφ(x, X, Z)||[n].

Proof. By Theorem 3, there exists a V L′ proof π of ∃Z < tφ(x, X, Z) that is in
CVNF.

We proceed by induction on the depth of π. The base case follows from
Lemma 5 and the comments that precede it. The inductive step is divided into
cases: one for each rule. With the exception of cut, every rule can be handled
the same way it is handled in the V 1−G∗1 Translation Theorem [6], and will not
be repeated here.

When looking at the cut rule, there are three cases. If the cut formula is
ΣB

0 , then we simply cut the corresponding Σq
0 formula in the GL∗ proof. If the

cut formula is not ΣB
0 , then it must be anchored since the proof is in CVNF.

This means the cut formula is an instance of ΣB
0 -edge-rec or an instance of

ΣB
0 -COMP. First suppose it is an instance of ΣB

0 -edge-rec. Then we are able
to cut the corresponding formula in the GL∗ proof. This is because the axiom
translates into a ΣCNF (2) formula, and the free variables in the translation are
parameter variables since the formula is not bit-dependent on non-parameter
string variables,

When the cut formula is an instance of ΣB
0 -COMP, we apply the same trans-

formation as in the proof of the V NC1−G∗0 translation theorem [7]. That is, we
remove the quantifiers by replacing the variables with Σq

0 formulas that witness
the quantifiers. This change does not effect other cuts since their free variables
are parameter variables or they are Σq

0 formulas and remain Σq
0 after the sub-

stitution. The current cut formula becomes a Σq
0 formula, which can be cut.

4 Proving GL∗ Is Sound in ΣB
0 -rec

In this section, we show that GL∗ does not capture reasoning for a higher com-
plexity class. This is done by proving, in ΣB

0 -rec, that GL∗ is sound. This idea
comes from [11] where Cook showed that PV proves extended Frege is sound
and [2] where Krajicek and Pudlak showed T i

2 proves Gi is sound for i > 0.
We will actually show that V L proves GL∗ is sound. This theory is a univer-

sal conservative extension of ΣB
0 -rec. In [9], the author proved that V L proves

induction on ΣB
0 formulas that contain log space functions. Formally, this is

ΣB
0 (LFL)-IND. In general, we will give informal proofs, but we will be sure in-

duction hypotheses do not use functions that are not log space. Once the proof
in V L is done, we will know that it can be done in ΣB

0 -rec as well since V L is a
conservative extension of ΣB

0 -rec [9].
We start the proof by giving a log space algorithm that witnesses ΣCNF (2)

formulas when the formula is true. This algorithm is the algorithm given in [10]
with a few additions to find the satisfying assignment. This algorithm can be
formalized in V L since it is a log space algorithm, and V L proves that it is
correct. This means we can use this function in induction hypotheses. We then

use this function to define a log space function that witnesses GL∗ proofs. We
finish by proving in V L that the algorithm is correct.

4.1 Witnessing ΣCNF (2) Formulas

We want to define a function W that takes as input a ΣCNF (2) formula and
an assignment to the free variables, and returns an assignment to the quantified
variables that satisfies the quantifier free portion of the formula whenever pos-
sible. Let ∃zF (z,x) be a ΣCNF (2) formula, where F is quantifier free, and let
v be the values assigned to x. We begin by using v to simplify F . By the form
of ΣCNF (2) formulas, the simplified formula is CNF (2). We now need to find
a satisfying assignment to the simplified formula, if one exists. The simplified
formula will also be called F .

To find the satisfying assignment, we construct an undirected tagged graph
(G,T) based on F . This is done as in [10]. The graph G has a vertex vi for every
clause Ci in F . There is an edge between two vertices vi and vj if there is a
literal l such that l is in Ci and l is in Cj . A vertex is tagged if the corresponding
clause contains a pure literal.

Based on this construction, Johannsen proved the following lemma [10].

Lemma 6. F is satisfiable if and only if it is possible to direct the edges of G
such that there are no untagged sinks.

The proof of this lemma can be done in V L since the direction for the edges can
be easily construction from the satisfying assignment and vice versa. Johannsen
noted that the edges can be properly directed if and only if G does not contain an
untagged tree. The only if direction is easy to prove using a counting argument.
A tree has fewer edges than nodes, so directing the edges cannot make every
node a non-sink. This can be formalized in V L since V L extends V TC0, and,
therefore, proves the pigeon hole principle for ΣB

0 (LFL) formulas [9]. To prove
the other direction in V L, we give a log space algorithm that directs the edges
appropriately, and prove the correctness of the algorithm in V L. This also gives
us the function W we are looking for.

We use a trick first used in [13] to find a cycle in a graph. For each edge
e = (u, v) in G, we call its two end points eu and ev, with the obvious meaning.
Given an end point p, we the edge can be obtain by e(p) and the vertex by
v(p). Then we can define the permutations σG, which is the product of the
transposition (euev) for every edge in G, and ρG, which is the product of the
cycles (ev

1 . . . ev
n) for each vertex v, where e1, . . . , en are the edge incident to v.

Then the permutation πG = ρG ◦ σG. We will often talk about the graph of πG,
which will also be called πG. This permutation is useful because of the following
nice property first proved in [13].

Definition 9 An end point eu of a vertex e = (u, v) is trivially traversed if the
there are no end points eu

1 on the path from eu to ev in πG. If the path from eu

to ev does not exists, then eu is not trivially traversed.1

1 This definition comes from a personal communication from Mark Braverman.

Lemma 7. The connected component of G that contains edge e = (u, v) is a
tree if and only if every end point in the cycle of πG that contains eu is trivially
traversed. Moreover, this is provable in V L.

This gives us a method of finding cycles.
The algorithm to find appropriate directions for the edges is done in stages.

In stage i, we consider the ith vertex vi. If the vertex is tagged, we continue.
Otherwise, we search G, using πG, for a cycle or tagged vertex that can be reached
from vi. If no cycle or tagged vertex is found, then we found an untagged tree
and we can stop. The edges on the path from vi to the cycle or tagged vertex
are directed away from vi. The edges in the cycle are directed to form a directed
cycle, which direction does not matter. If one of these edges was given a direction
in an earlier stage, that direction is overwritten with the new value.

If we let FindTagOrCycle(G, p) be a function that returns the closest end
point q to p in πG such that v(q) is tagged or q is not trivially traversed. (This
can be done using the algorithm described in [10].) Then the algorithm described
above can be implemented as in Algorithm 1.

for i = 1 . . . n do
if vi is not tagged then

w = FindTagOrCycle(G, evi) for some edge e adjacent to vi.
If w = null, stop.
Else, w′ = evi

while w′ 6= w do
Direct e(w′) away from v(w′)
w′ = πG(w′)

end while
end if

end for

Algorithm 1: Algorithm to direct edges on a tagged graph

The correctness of the algorithm follows from the following invariant: After
stage i, the vertices v1, . . . , vi are tagged or are not sinks. It is easy to check that
this holds.

We claim this algorithm can be done in log space. Note that an edge may
be directed multiple times, but the values are never used. So, to determine the
direction of an edge e, we can run the algorithm, but only keep track of e’s
direction. The cycles and tagged vertex are found by searching πG, which has
out-degree 1. Therefore the search can be done in log space. Note that we are
using that log space is closed under composition.

The final thing to do is prove the correctness of the algorithm in V L. This
can be done by induction on the invariant above. Since the algorithm is log
space, the invariant can be stated as a ΣB

0 (LFL) formula, so the induction can
be done in V L.

The function W can be defined by applying the reduction to the input and
output of this algorithm. We add that pure literals are assigned > and variables
that are still not assigned a value are assigned ⊥.

4.2 Witnessing GL∗ Proofs

Let π be a GL∗ proof of a Σq
1 formula ∃zP (x,z), and let A be an assignment

to the parameter variables (Definition 2). We will assume π is in free variable
normal form (Definition 6). If it is not, we can rename variables to put it in
free variable normal form. The renaming can be done in log space since all
that is really required is to traverse the proof, which is a tree, to determine an
appropriate name.

Let Γi → ∆i be the ith sequent in π. To prove the soundness of GL∗, we
define a function Wit(i, π, A) that will find a formula in Γi that is false or a
formula in ∆i that is true. We will prove by induction that for any assignment
to all of the free variables if Γi and ∆i, Wit(i, π) will find at least one formula
that satisfies the sequent.

There are two things to note. Every formula in Γi is ΣCNF (2), which means
it can be evaluated. Also, we need an assignment that gives appropriate values to
the non-parameter free variables that could appear. To take care of this second
point, we extend A to an assignment A′ as follows:
1: Given a non-parameter free variable y, find the ∃-left inference in π that

uses y as an eigenvariable. Let z be the new bound variable and let F be the
principal formula.

2: Find the descendant of F that is used as a cut formula. Let F ′ be the cut
formula. Note that F is a subformula of F ′, and, because of the variable
restriction on cut formulas, every free variable in F ′ is a parameter variable.

3: Assign y the value that W (F ′, A) assigns z.
The reason for this particular assignment will become evident in the proof of
Lemma 8.

We can now define Wit(i, π, A′), which witnesses Γi → ∆i. Wit will go
through each formula in the sequent to find a formula that satisfies the sequent.
ΣCNF (2) formula are evaluated using the algorithm described in the previous
section. We will not focus our attention on other Σq

1 formulas, which must appear
in ∆i. Each Σq

1 formula F =syn ∃zF ∗(z) in ∆ is evaluated by finding a witness
to the quantifiers as follows:
1: Find a formula F ′ in π that is a ancestor of F , is satisfied by A′, and is a

Σq
0 formula of the form F ∗(z1/B1, . . . , zn/Bn), where each Bi is Σq

0

2: zi is assigned > if A′ satisfies Bi, otherwise it is assigned ⊥
3: if no such F ′ exists, then every bound variable is assigned ⊥.

Lemma 8. For every sequent Γi → ∆i in π, Wit(i, π,A′) finds a false formula
in Γi or a true formula in ∆i.

Proof. We prove the theorem by induction on the depth of the sequent. For the
base case, the sequent is an axiom, and the theorem obviously holds. For the

inductive step, we need to look at each rule. We can ignore ∀-left and ∀-right
since universal quantifiers do not appear in π.

We will not assume all formulas in Γi are true and all ΣCNF (2) formulas in
∆i as false. So we need to find a Σq

1 formula in ∆i that is true.
Consider cut. Suppose the inference is

F, Γ → ∆ Γ → ∆,F

Γ → ∆

First suppose F is true. By induction, with the upper left sequent, Wit witnesses
one of the formulas in ∆. Then the corresponding formula in the bottom sequent
is witnessed by Wit. This is because the ancestor of the formula in the upper
sequent that gives the witness is also an ancestor of the corresponding formula
in the lower sequent. If F is false, it cannot be the formula that was witnessed
in the upper right sequent, and a similar argument can be made.

Consider ∃-right. Suppose the inference is

Γ → ∆,F (B)
Γ → ∆,∃zF (z)

First suppose F (B) is Σq
0 . If it is false, we can apply the inductive hypothesis,

and, by an argument similar to the previous case, prove one of the formulas in
∆ must be witnessed. If F (B) is true, then Wit will witness ∃zF (z) since F (B)
is the ancestor that gives the witness. If F (B) is not Σq

0 , then we can apply
the inductive hypothesis, and, by the same argument, find a formula that is
witnessed.

The last rule we will look at is ∃-left. Suppose the inference is

F (y), Γ → ∆

∃zF (z), Γ → ∆

To be able to apply the inductive hypothesis, we need to be sure that F (y) is
satisfied. If ∃zF (z) it true, then we know F (y) is satisfied by the construction of
A′: the value assigned to y is chosen to satisfy F (y) if it is possible. Otherwise,
∃zF (z) is false, and we do not need induction.

For the other rules the inductive hypothesis can be applied directly and the
witness found as in the previous cases.

Theorem 5. V L proves GL∗ is sound for proofs of Σq
1 formulas.

Proof. The functions W and Wit are log space functions and can be formalized
in V L. A function that finds A′, given A, can also be formalized since it is log
space. The final thing to note is that the proof of Lemma 8 can be formalized
in V L since the induction hypothesis can be express as a ΣB

0 (LFL) formula and
the induction carried out.

The reason this proof does not work for a larger proof system, say G∗1, is
because W cannot be formalized for the larger class of cut formulas. Also, if the
variable restriction was not present, we would not be able to find A′ in log space,
and the proof would, once again, break down.

5 Concluding Remarks

To summarize, we have a proof system that corresponds to log space reasoning.
This is a formula-based proof system, and it corresponds to ΣB

0 -rec in the usual
way. This treatment of the proof system suggests a proof system for NL, which
would be based on 2− SAT instead of SAT (2).

One drawback with GL∗ is the variable restriction. It forced us to prove a
normal form for V L′ proofs. This normal form is specific to V L′, and this proof
would have to be completely redone for other theories. On the other hand, the
proof that GL∗ is sound can be easily changed to work for other theories. All that
really needs to be changed for the case of NL is the definition of the function
W .

I would like to thank my supervisor Stephen Cook for providing many useful
comments.

References

1. Cook, S.: Theories for complexity classes and their propositional translations. In
Krajicek, J., ed.: Complexity of computations and proofs. Quaderni di Matematica
(2003) 175–227. Also available at http://www.cs.toronto.edu/˜sacook/

2. Krajicek, J., Pudlak, P.: Quantified propositional calculi and fragments of bounded
arithmetic. Zeitschrift f. Mathematikal Logik u. Grundlagen d. Mathematik 36
(1990) 29–46

3. Cook, S.: A survey of complexity classes and their associated propositional
proof systems and theories, and a proof system for log space. Available at
http://www.cs.toronto.edu/˜sacook/ (2001)

4. Pollett, C.: A propositional proof system for Ri
2. In Beame, P.W., Buss, S.R.,

eds.: Proof Complexity and Feasible Arithmetics. Volume 39 of DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science. AMS (1997) 253–278

5. Buss, S.R.: Introduction to proof theory. In Buss, S.R., ed.: Handbook of Proof
Theory. Elsevier Science Publishers, Amsterdam (1998) 1–78

6. Cook, S.: CSC 2429s: Proof complexity and bounded arithmetic. Course notes.
Available at http://www.cs.toronto.edu/˜sacook/csc2429h.02 (2002)

7. Cook, S., Morioka, T.: Quantified propositional calculus and a second-order theory
for NC1. (Accepted for Archive for Math. Logic)

8. Krajicek, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Cambridge University Press (1995)

9. Perron, S.: GL∗: A propositional proof system for logspace. Master’s thesis, Uni-
versity Of Toronto (2005). Available at http://www.cs.toronto.edu/˜sperron/

10. Johannsen, J.: Satisfiability problem complete for deterministic logarithmic space.
In: STACS 2004, 21st Annual Symposium on Theoretical Aspects of Computer
Science, Proceedings, Springer (2004) 317–325

11. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Pro-
ceedings of the 7-th ACM Symposium on the Theory of computation. (1975) 83–97

12. Zambella, D.: End extensions of models of linearly bounded arithmetic. Annals of
Pure and Applied Logic 88 (1997) 263–277

13. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space.
Journal of Algorithms 8 (1987) 385–394

