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Abstract

We investigate the properties of chordal graphs that follow from the well-known fact that chordal

graphs admit tree representations. In particular, we study the structure of reduced clique graphs

which are graphs that canonically capture all tree representations of chordal graphs. We propose a

novel decomposition of reduced clique graphs based on two operations: edge contraction and removal

of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs,

and discuss chordal graphs that admit a tree representation with small number of leaves.
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1. Introduction

A tree representation of a graph G consists of a host tree and a collection of its subtrees where the

subtrees correspond to the vertices of G and two subtrees share a common vertex if and only if the

corresponding vertices are adjacent. A clique tree of G is a tree representation of G in which the nodes

of the host tree “correspond” to the maximal cliques of G, i.e., for each node of the host tree, the set

of vertices of G whose corresponding subtrees contain that particular node is a maximal clique of G.

Equivalently, we can define a clique tree of G as a tree whose vertices are the maximal cliques of G
and who satisfies a particular condition (see Section 1.1). It can be readily seen that from every tree

representation of G, by (possibly) contracting some edges of the host tree, one can always obtain a

clique tree of G.

A graph is chordal if it contains no induced cycle of length four or more. It is well-known that

chordal graphs are precisely the graphs that admit tree representations [2, 6], or equivalently, the

graphs that admit clique trees. In this paper, we focus on this aspect of chordal graphs, and study

properties of chordal graphs associated with the structure of clique trees. In particular, we investigate

the recently rediscovered notion of the reduced clique graph of a chordal graph. This is the graph we

obtain by taking the maximal cliques of a chordal graph G as vertices, and by putting edges between

those vertices for which the corresponding cliques intersect in a minimal separator that separates

them (see Section 2 for a precise definition). This is a subgraph of the (usual) clique graph of G (where

edges are between cliques that intersect) and was first defined in [5] more than fifteen years ago.

Since then, this notion was largely ignored (likely due to the fact that it was named “clique graph”
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in [5] where the (more usual) clique graph was called “clique intersection graph”), and only recently

[9, 19, 20], there has been some interest in properties of this derived graph.

The aim of this paper is to further stimulate the interest in reduced clique graphs by describing

some aspects of their structure, explaining where they differ from similar (established) notions, and in

what way they can help us in solving computational problems. Our contribution consists of two parts.

Part 1. Structure and decomposition of labeled reduced clique graphs

Since at least the papers of Gavril [7] and Shibata [22], it has been known that the set of all clique

trees of a chordal graph G is precisely the set of all maximum-weight spanning trees of the clique

graph of G where the weight of an edge is defined as the size of the intersection of the corresponding

cliques of G. As shown in [5] (also see Theorem 3 in Section 2), this is also true for the reduced clique

graph of G but, unlike the (usual) clique graph, the reduced clique graph of G has the additional

property that each of its edges appears in at least one clique tree of G. (In other words, the reduced

clique graph G is the (unique) union of all clique trees of G.) At first glance, this might not seem like

a big advantage, but there are examples [11, 19, 20] where it helps to deal with the reduced clique

graph of G rather than with its (usual) clique graph. To illustrate one of the fundamental differences

between the two clique graphs, note that adding a universal vertex to a connected chordal graph G
turns its clique graph into a complete graph whereas its reduced clique graph remains unchanged.

In the first part of this paper (in Section 2 and 3), we first describe the general structure of reduced

clique graphs based on minimal separators. Then we propose a particular decomposition of reduced

clique graphs using the following two operations: the contraction of an edge, and the removal of the

edges of a split. For these two operations, we shall only consider particular edges and splits (as ex-

plained later), and call any graph obtained using a combination of the two operations a split-minor. It

turns out, as we show, that these operations, when performed on the reduced clique graph of a chordal

graph G, correspond directly to operations on G. In other words, we show that every split-minor of a

reduced clique graph is again a reduced clique graph. Moreover, we show that in every reduced clique

graph there is at least one edge and at least one split that we can contract or remove, respectively.

This, in particular, will imply these two operations allow removing all edges of every reduced clique

graph in some order which is also true for each of its split-minors (i.e., any valid sequence of these two

operations can be extended to one that removes all edges). We feature this decomposition mainly in the

second part of this paper, but we envision that it may find algorithmic uses in inductive constructions

of solutions for problems on reduced clique graphs from solutions on their split-minors.

Part 2. Use of reduced clique graphs to characterize properties of chordal graphs

In the second part of the paper (in Section 4 and 5), we focus on parameters of chordal graphs,

in particular, those that can be described in terms of their reduced clique graphs. First, we focus on

the notion of an asteroidal set and an asteroidal number. We say that a set of vertices A of a graph

G is asteroidal if for each a ∈ A, the vertices in A \ {a} belong to a common connected component of

G−N [a]; the asteroidal number of G, denoted by a(G), is then the size of a largest asteroidal set of G.

We start by showing that asteroidal sets (of vertices) in chordal graphs correspond to asteroidal

collections of (maximal) cliques (see Section 4). This will allow to look at these sets purely from the

perspective of reduced clique graphs and thus will alllow us to apply the notion of a split-minor. In

particular, we show that the asteroidal number of a graph is a monotone parameter with respect to

a particular (but rather technical) restriction of the notion of a split-minor that we call a good split-

minor (explained later). That is, we show that if the reduced clique graph of G is a good split-minor of

the reduced clique graph of G′, then a(G) ≤ a(G′). Note that this will allow us to conclude that there

exists a collection of reduced clique graphs such that a chordal graph G satisfies a(G) < k if and only if

the reduced clique graph of G contains no good split-minor from the collection. We then go on to prove

that such a collection consists precisely of one graph (up to the labels of edges), namely, the star with

k edges. In the case k = 3, this will provide us with a new characterization of interval graphs using

a single forbidden obstruction. (Recall that interval graphs are the intersection graphs of intervals of

2



the real line, or equivalently, the chordal graphs with a(G) < 3 as shown in [16]). We remark that

this is different from other known characterizations of interval graphs such as the characterization by

forbidden induced subgraphs which contains several infinite families (see Figure 6).

Secondly, we look at another parameter of chordal graphs G, the leafage l(G), which is defined

as the smallest number of leaves in the host tree of a tree representation of G, or equivalently, the

smallest number of leaves in a clique tree of G. We similarly apply the notion of a split-minor to this

concept. We show that the leafage is also monotone but for a different restriction of the notion of a

split-minor, and we further discuss small substructures that cause the leafage to be large.

We remark that it is known that both the asteroidal number and the leafage can be computed

in polynomial time for chordal graphs by the respective algorithms from [13] and [11]. But it is the

results presented in this paper that provide us with a structural understanding that underpins the

two algorithms. In particular, the algorithm in [11] is largely based on the work from this paper,

whereas the algorithm from [13] can be, in fact, seen as trying to find a labeled k-star when deciding

if the given graph has asteroidal number at least k.

The interest in these two parameters is mainly due to the fact that if they are bounded, we can

efficienly solve several problems on chordal graphs that would otherwise be hard. For instance, the

maximum independent dominating set [1] and branchwidth [21] can be solved efficiently if the aster-

oidal number, respectively, leafage is bounded. Also, bandwidth [14] can be efficiently 2k-approximated

on chordal graphs of leafage at most k. We note that these and similar results largely stem from the

observation that the two parameters can be seen as a measure of how far a chordal graph is from being

an interval graph as the leafage and asteroidal number two correspond precisely to interval graphs.

When one of the parameters is bounded, one can usually adapt an efficient algorithm that works for

interval graphs to also work on chordal graphs where the parameter is bounded.

Finally, note that, as this is a structural paper, we do not discuss complexity issues here such as

the ones connected to testing for the existence of a (fixed) split-minor in a given graph. Further, we

do not analyze the structure of unlabeled reduced clique graphs, that is, the structure of graphs that

can be labeled to become reduced clique graphs. These issues are currently a subject of an ongoing

investigation of the authors and will be published separately.

For notation and standard graph-theoretical notions used in this paper we refer the reader to [23].

1.1. Clique tree

A clique tree of a connected chordal graph G is any tree T whose vertices are the maximal cliques

of G such that for every two maximal cliques C,C′, each clique on the path from C to C′ in T contains

C ∩ C′. Further, the edges of T are labeled where edge CC′ of T has label C ∩C′. (See Figure 1b)

1.2. Minimal separators

A set S ⊆ V (G) disconnects a vertex a from b in G if every path of G between a and b contains a

vertex from S. A non-empty set S ⊆ V (G) is a minimal separator of G if there exist a and b such that

(i) S disconnects a from b in G, and

(ii) no proper subset of S disconnects a from b in G.

Observe that the definition implies that the vertices a, b are necessarily in the same connected compo-

nent of G, since otherwise the empty set disconnects them and thus violates (ii).

For instance, the set S = {a, c} is a minimal separator of the graph G in Figure 1a, since it discon-

nects b and d but neither {a} nor {c} does, because of the paths d, c, b and d, a, b, respectively. Similarly,

S = {a} is a minimal separator, because it disconnects g and c. This emphasizes that, unlike what its

name suggests, a minimal separator is not necessarily an inclusion-wise minimal cutset.

Minimal separators play an important role in chordal graphs. In particular, it is well-known that

every minimal separator of a chordal graph induces a clique. Moreover, the converse is also true.

Theorem 1. [8] G is chordal if and only if every minimal separator of G is a clique.
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Figure 1: a) G, b) two example clique trees of G, c) Cr(G), d) H{a}

1.3. Separating pairs

As mentioned above, every minimal separator of a chordal graph G is a clique, and hence, it is

necessarily contained in a maximal clique of G. In fact, it turns out that it is contained in at least

two maximal cliques, and moreover, it is precisely the intersection of these cliques. This is shown as

follows (see also Lemma 2.3 in [2]).

Two maximal cliques C,C′ of G form a separating pair if C ∩ C′ is non-empty, and every path in G
from a vertex of C \ C′ to a vertex of C′ \C contains a vertex of C ∩ C′.

Theorem 2. A set S is a minimal separator of a chordal graph G if and only if there exist maximal

cliques C,C′ of G forming a separating pair such that S = C ∩ C′.

Proof. If maximal cliques C,C′ of G form a separating pair, then C∩C′ disconnects a vertex a ∈ C \C′

from a vertex of b ∈ C′ \ C. Moreover, C ∩ C′ is inclusion-wise minimal with this property, since for

every z ∈ C ∩ C′, the vertices a, z, b form a path from a to b. Finally, C ∩ C′ is also non-empty by the

definition of a separating pair, and hence, S = C ∩C′ is a minimal separator of G.

Conversely, let S be a minimal separator of G. That is, S is non-empty and there exist vertices

a, b such that S disconnects a from b in G and no proper subset of S has this property. Let Ka and Kb

be the two connected components of G − S that contain a and b, respectively. Let x be a vertex of Ka

with as many neighbours in S as possible among the vertices of Ka. Suppose that x is not adjacent

to a vertex w ∈ S. Since S is a minimal separator, w has a neighbour y in Ka. Let P be a shortest

path from x to y in Ka. Since w ∈ N(y) \ N(x), we have on P consecutive vertices x′, y′ such that

N(x)∩ S = N(x′) ∩ S 6= N(y′)∩ S. In fact, by the maximality of x, there exists w′ ∈ (N(x′) \N(y′))∩ S.

We let P ′ denote the subpath of P from x′ to y, and conclude that D = w′, P ′, w, w′ is a cycle in G where

w′, y′ are neighbours of x′ on this cycle with w′y′ 6∈ E(G). So, chordality of G implies that x′ must have

a neighbour in D \ {x′, w′, y′}, which is impossible because x′ is not adjacent to w and P ′ is an induced

path. Therefore, we conclude that N(x)∩S = S, and by the same token, we have a vertex y in Kb with

N(y) ∩ S = S. So, if C and C′ are maximal cliques of G that contain S ∪ {x} respectively S ∪ {y}, then

C,C′ form a separating pair in G and S = C ∩C′ as required.
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2. The reduced clique graph

Immediately from the respective definitions we have that every edge CC′ of a clique tree of G is

such that the cliques C,C′ form a separating pair in G. This effectively inspires the following notion.

The reduced clique graph Cr(G) of G is the graph whose vertices are the maximal cliques of G, and

whose edges CC′ are between cliques C,C′ forming separating pairs. Further, as in the case of clique

trees, the edges of Cr(G) are labeled where edge CC′ of Cr(G) has label C ∩ C′. (See Figure 1c)

We remark that if G is disconnected, it follows from the definition that the reduced clique graph of

G is the disjoint union of the reduced clique graphs of the connected components of G. It also follows

that, conversely, if G is connected, then its reduced clique graph is also connected. Note that, unlike

what is usual, we do not define clique trees for disconnected graphs, and in the subsequent text, having

a clique tree will always imply that the considered graph and its reduced clique graph are connected.

From this definition, we can conclude that if G is connected, then every clique tree of G is a span-

ning tree of the reduced clique graph of G. Surprisingly, a much stronger statement is true, which was

already proved in [5], and it is the following fundamental result about reduced clique graphs.

Theorem 3. [5] Let G be a connected chordal graph. A tree T is a clique tree of G if and only if T is

a maximum-weight spanning tree of Cr(G) where the weight of each edge CC′ is defined as |C ∩ C′|.
Moreover, the reduced clique graph Cr(G) is precisely the union of all clique trees of G.

Note that by [4] it is known that every connected chordal graph G has at most |V (G)| maximal

cliques. Consequently, the number of nodes in the reduced clique graph of G and in every clique tree

of G is at most |V (G)|. In contrast, the number of edges in the reduced clique graph of G can be as

large as Ω(|E(G)|2); for instance, consider G to be a collection of edges sharing a common vertex.

2.1. Separator graphs

In order to understand the structure of reduced clique graphs, we now briefly study intersections

of maximal cliques. As proved in Theorem 2, if two maximal cliques are adjacent in the reduced clique

graph of G, then their intersection is necessarily a minimal separator (and hence it is non-empty).

However, the converse is not always true (see nodes {adf} and {abc} in Figure 1c) and, as we shall see,

we need to take into account a particular connectivity condition. We utilize special auxiliary graphs

defined as follows.

Let S ⊆ V (G). The S-separator graph of G, denoted by HS , is the graph whose vertices are the

maximal cliques C of G with S ⊆ C, and edges are between cliques C,C′ such that C ∩ C′ % S.

In other words, the ∅-separator graph is precisely the clique (intersection) graph of G, and if S 6= ∅,

then HS is the intersection graph of the maximal cliques of G − S whose vertices are completely

adjacent to S in G. For instance, if G is the graph from Figure 1a, then the S-separator graph HS for

S = {a} is the graph depicted in Figure 1d. Note that this graph has three connected components.

Using the graphs HS , we now characterize the structure of the reduced clique graph Cr(G) by

proving that two maximal cliques are “separated” by their intersection S if and only if they are in

different connected components of the S-separator graph HS .

Theorem 4. Let G be a chordal graph, let C and C′ be two maximal cliques of G, and let S = C ∩ C′.

Then CC′ is an edge of Cr(G) with label S if and only if S is non-empty, and C and C′ belong to different

connected components of HS .

Proof. Suppose that S is non-empty, and C and C′ are in different connected components of HS .

Suppose that CC′ is not an edge of Cr(G). Then C,C′ is not a separating pair, and hence, since

S = C ∩ C′ 6= ∅, there exists a path x1, . . . , xk from x1 ∈ C \ C′ to xk ∈ C′ \C such that xi 6∈ S = C ∩C′

for each i ∈ {1 . . . k}. It follows that x, x1, . . . , xk, x is a cycle in G for each x ∈ S. But G is chordal which

implies that each vertex of S is adjacent to all of x1, . . . , xk. Now, let C1 = C, Ck+1 = C′, and for each
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i ∈ {2 . . . k}, let Ci be a maximal clique of G containing {xi−1, xi} ∪ S. Clearly, the cliques C1, . . . , Ck+1

all belong to HS . Also, CiCi+1 is an edge of HS for each i ∈ {1 . . . k}, since Ci ∩ Ci+1 ⊇ S ∪ {xi} % S.

Hence, there is a path from C1 = C to Ck+1 = C in HS contradicting that C,C′ are in different

connected components of HS .

Conversely, suppose that CC′ is an edge of Cr(G) with label S. Then C,C′ is a separating pair

implying S 6= ∅. Suppose that C,C′ belong to a connected component K of HS . Then there is a

path C1, . . . , Ck in K with C1 = C and Ck = C′. Since CiCi+1 is an edge of HS , there exist a vertex

xi ∈ (Ci ∩ Ci+1) \ S for each i ∈ {1 . . . k − 1}. Clearly, x1 ∈ C and xk−1 ∈ C′. Also, xi 6∈ S = C ∩ C′

and xixi+1 is an edge of G for each i ∈ {1 . . . k − 2}. We conclude that x1, . . . , xk−1 is a path in G
from a vertex of C \ C′ to a vertex of C′ \ C with no vertex of C ∩ C′. But then CC′ is not an edge of

Cr(G), a contradiction.

2.2. Structure of clique trees

In the previous paragraphs, we characterized the reduced clique graph of G using minimal separa-

tors. Based on this, we look back at the relationship between the clique trees and the reduced clique

graph of G. By Theorem 3, every clique tree T of a connected chordal graph G is characterized in terms

of Cr(G) as a maximum-weight spanning tree of Cr(G). Conversely, we characterize Cr(G) in terms of

T as follows.

Theorem 5. Let G be a connected chordal graph, let T be a clique tree of G, and let C,C′ be two

maximal cliques of G. Then CC′ is an edge of Cr(G) with label S = C ∩ C′ if and only if there exists an

edge with label S on the path from C to C′ in T .

Proof. Let C,C′ be two maximal cliques of G and let S = C ∩ C′. Let P denote the path from C to C′

in T . First, suppose that CC′ is an edge of Cr(G) with label S. Then, by Theorem 4, the cliques C and

C′ belong to different connected components of HS . Moreover, since T is a clique tree, all cliques on

P belong to HS . So, there must be consecutive cliques C∗, C∗∗ on P that belong to different connected

components of HS . By Theorem 4, the edge C∗C∗∗ has label S, and we are done.

Conversely, suppose that CC′ is not an edge of Cr(G) but there is an edge C∗C∗∗ with label S on P .

We conclude that S is a minimal separator, and hence, Theorem 4 yields that C and C′ belong to the

same connected component of HS . So, there exists a path P ′ = C1, . . . , Ck from C1 = C to Ck = C′ in

HS . By the definition of P ′, we have Ci ∩ Ci+1 % S for each i ∈ {1 . . . k − 1}. Now, we remove from T
the edge C∗C∗∗ to obtain a subtree T1 that contains C and a subtree T2 that contains C′. Since C1 = C
belongs to T1 and Ck = C′ belongs to T2, there exists i such that Ci belongs to T1 while Ci+1 belongs

to T2. Clearly, the path from Ci to Ci+1 in T contains the edge C∗C∗∗. So, since T is a clique tree, we

conclude S = C∗ ∩ C∗∗ ⊇ Ci ∩ Ci+1, a contradiction. Therefore, no edge on P has label S.

Finally, we can describe the structure of T in terms of the graphs HS as follows.

Theorem 6. Let G be a connected chordal graph, and let T be a clique tree of G. Let S be a minimal

separator of G, and let kS denote the number of connected components of HS . Then T contains exactly

(kS − 1) edges with label S, and each connected component of HS induces a connected subgraph in T .

Proof. Let C,C′ be two maximal cliques of G that belong to HS , and let P be the path from C to

C′ in T . We observe that every clique on P also belongs to HS , since T is a clique tree. It follows

that the vertices of HS induce in T a connected subgraph. Next, suppose that C,C′ belong to some

connected component K of HS . We show that every clique on P also belongs to K. Suppose otherwise,

let C∗ be the first clique on P that lies outside K. (Recall that P is a path from C to C′). Let C∗∗ be

the clique on P just before C∗. Thus, C∗∗ belongs to K, and hence, C∗ ∩ C∗∗ = S by Theorem 4. This

implies that C ∩ C′ = S because T is a clique tree. Thus, by Theorem 5, CC′ is an edge of Cr(G) with

label S. But C,C′ both belong to K which contradicts Theorem 4. Therefore, the vertices of K induce

a connected subgraph in T .
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Finally, since both the vertices of HS and of each connected component of HS induce a subtree in T ,

it follows that T must contain exactly (kS − 1) edges with label S.

Note that if S is a minimal separator of G, then kS ≥ 2. This can be seen as follows. By Theorem 2,

there are maximal cliques C,C′ that form a separating pair such that C∩C′ = S. Thus, CC′ is an edge

of Cr(G) with label S, and, by Theorem 4, the cliques C and C′ are in different connected components

of HS . This implies kS ≥ 2. So, as a consequence of the above theorem, we have that every clique tree

T of G contains at least one edge with label S which also shows that G has at most |V (G)| − 1 minimal

separators, since T has at most |V (G)| nodes as mentioned previously.

3. Split-minors

In this section, we focus on a different aspect of the structure of reduced clique graphs. We develop

a decomposition§ technique that will allow us to completely decompose any reduced clique graph using

three natural reduction rules. We shall utilize this decomposition in later sections.

Let us start by explaining some intuition behind the decomposition. When considering clique trees

(and tree representations), it is natural to perform certain operations on the (host) tree. In particular,

removing and contracting edges of the tree are natural operations, since they result in one or more

clique trees that represent specific subgraphs or supergraphs of the original graph. For this reason, the

two operations are sometimes used to construct divide-and-conquer or greedy algorithms for problems

on chordal graphs. Since we aim to argue that reduced clique graphs can be used algorithmically in

place of clique trees (as a canonical substitute), we need to find similar operations on reduced clique

graphs. Our goal therefore is the following:

(G1) define edge contraction on reduced clique graphs,

(G2) define edge removal on reduced clique graphs, and

(G3) define the two operations so that the order in which they are performed is independent of the

result.

First, let us look at contraction. Unlike the usual definition, to formally define contraction in clique

trees and reduced clique graphs, we need to be a little careful. Note that we define clique trees and

reduced clique graphs as graphs whose vertex set is a collection of sets as well as the edges of these

graphs are labeled with sets. Thus the contraction operation on these graphs should reflect these facts.

We define it as follows.

Let H be a graph whose vertices are sets and whose edges are labeled with sets. Let e = C1C2 be

an edge of H . Then we write H/e for the graph obtained from H by contracting e into C1 ∪ C2, that is,

(i) we remove the nodes C1 and C2, add a new node C1 ∪ C2, and

(ii) for each edge of H with label S between some vertex C and one of C1, C2, we add a new edge with

label S between C and C1 ∪C2.

Note that this operation (as just decribed) may create parallel edges. This is a real problem, and

we shall deal with it in a moment. But before that, let us look at clique trees first where parallel edges

are not an issue with respect edge contraction (since they do not contain cycles).

Let T be a clique tree of a chordal graph G and let e = C1C2 be an edge of T . Observe that that T/e is

also a clique tree. Intuitively, we obtain T/e by treating the clique tree T as a tree representation (i.e., a

host tree and its subtrees) and by contracting e in the host tree and all subtrees of the representation

that contain e. Clearly, this operation does not remove any edges from G and only adds new edges

between the vertices of C1 and C2. In particular, T/e is a clique tree of the graph G′ we obtain from G
by adding all possible edges between the vertices of C1 and C2. This implies that G′ is a chordal graph.

§the word “reduction” would probably be more appropriate here, but we would like to avoid the confusion with the word

“reduced” in “reduced clique graph”.
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Figure 2: Examples justifying the definition of a split-minor.

In reduced clique graphs, as mentioned above, the operation of edge contraction may create parallel

edges. Since we would like to deal with simple graphs, we need to decide how to remove parallel

edges. Usually, one just removes all but one edge between any two vertices to obtain an equivalent

simple graph. Unfortunately, parallel edges between same vertices may have different labels. We

need to either a) decide which of them to keep, or b) use a rule to assign a label based on the labels

of the parallel edges, or c) do not allow contractions that produce parallel edges with different labels.

Further, in analogy to clique trees, we would like that the contraction of an edge C1C2 in the reduced

clique graph of G produces the reduced clique graph of the graph G′ obtained from G by adding all

possible edges between the vertices of C1 and C2. It turns out that c) is the only choice that also

satisfies this constraint (as demostrated in Figure 2ab). Thus this leads us to the following definition.

We say that an edge e = C1C2 of H is permissible if for every common neighbour C of C1 and C2, the

edges C1C and C2C have the same label. Clearly, if e is permissible, then contracting it in H creates

parallel edges only between C1 ∪ C2 and the common neighbours of C1 and C2. All these edges have

the same label S, and we therefore remove all but one of them to obtain a simple graph. Consequently,

we write H/e for this (simple) graph from now on.

In the same fashion, we look at the second operation, the removal of edges. Again, we draw inspira-

tion from clique trees. Let T be a clique tree of G and let e = C1C2 be an edge of T . Removing the edge

e from T splits T into two connected components; let X and Y be the vertex sets of those components

(vertices are maximal cliques of G), and let VX be the union of cliques C ∈ X , and VY be the union of

cliques C ∈ Y . By again treating T as a tree representation and restricting the host tree and subtrees

to X , respectively Y , we observe that T [X ] and T [Y ] are clique trees of G[VX ] and G[VY ], respectively.

Now, let us look at reduced clique graphs. Unlike in clique trees, we cannot simply remove an edge

in a reduced clique graph and expect the result to be again a reduced clique graph or a disjoint union

thereof (see Figure 2cd). We have to settle for the next best thing which is removing edges of cuts.

(Note that in trees removing edges and removing edges of cuts are equivalent operations.)

A cut of a graph H is a partition X ∪ Y of V (H) into two non-empty sets X and Y ; the edges of the

cut X ∪ Y are the edges having one endpoint in X and one endpoint in Y . A split of H is a cut X ∪ Y
of H such that every vertex of X with a neighbour in Y has the same neighbourhood in Y . (Note that

we allow |X | = 1 and |Y | = 1 unlike it is usual [3, 18] when defining a split, sometimes called a 1-join).

For a cut X ∪ Y , we denote by VX the union of the sets in X and by VY the union of the sets in Y .

In an analogy to clique trees, we only want to consider those cuts X ∪Y of Cr(G) for which Cr(G)[X ]
is the reduced clique graph of G[VX ] and Cr(G)[Y ] is the reduced clique graph of G[VY ]. Moreover, to

satisfy the condition (G3), we need to make sure that an edge is permissible in Cr(G)[X ] or Cr(G)[Y ] if

and only if it is permissible in Cr(G). This ultimately implies that all edges of the cut must have the

same label, which in turn yields (by Theorem 4) that the cut, in fact, must be a split. For instance,
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consider the graph G in Figure 2c; the partition X = {{a, b, c}, {b, c, d}}, Y = {{b, e}, {c, f}} depicted in

Figure 2e fails the first of the above conditions, since the reduced clique graph of G[VY ] is not Cr(G)[Y ].
Further, consider the the partition X = {{a, b, c}, {b, e}, {c, f}}, Y = {{b, c, d}} in Figure 2f; the edge

{a, b, c}{c, f} is permissible in Cr(G)[X ] but not in Cr(G). This leads to the following definition.

A split X ∪ Y of H is permissible if all edges of the split have the same label. Clearly, if an edge

e = C1C2 in H [X ] is permissible, then it is also permissible in H , since the edges between C1, C2 and

their common neighbours in Y all have the same label because X ∪ Y is a permissible split. The same

holds for the edges in H [Y ].

Now, combining the above operations yields the following notion.

We say that a graph H ′ is a split-minor¶ of H if H ′ can be obtained from H by a (possibly empty)

sequence of the following operations:

(L1) if v is an isolated vertex, remove v.

(L2) if e is a permissible edge, contract e.

(L3) if X ∪ Y is a permissible split, remove all edges between X and Y .

We remark that the rule (L1) is included to allow us to deal with disconnected graphs.

In the following paragraphs, we prove that every split-minor of a reduced clique graph is again a

reduced clique graph. We then discuss permissible edges and splits in reduced clique graphs, and as

a consequence, we describe how this implies a decomposition of reduced clique graphs. For the main

theorem, we need the following property of permissible edges.

Lemma 7. Let G be a connected chordal graph, let e = C1C2 be a permissible edge of Cr(G), and let

S = C1 ∩ C2 be the label of e. Then {C1} and {C2} are connected components of HS .

Proof. Clearly, both C1 and C2 are in HS because S = C1 ∩ C2. Suppose that the component K that

contains C1 has more than one clique. By Theorem 6, the set K induces a connected subgraph in any

clique tree of G. Hence, C1 has a neighbour C∗ in K such that C1C
∗ is an edge of Cr(G). This implies

C1 ∩ C∗ % S by Theorem 4, because C1, C
∗ belong to the same component of HS . Also, C1 and C2 are

in different components of HS because C1C2 is an edge of Cr(G) with label S. Hence, C∗ and C2 are in

different components of HS , and we conclude, by Theorem 4, that C∗C2 is also an edge of Cr(G) with

label S. This creates a triangle C1, C2, C
∗ in Cr(G). However, C1C

∗ and C2C
∗ have different labels,

and hence, e = C1C2 is not a permissible edge, a contradiction. We therefore conclude that K = {C1}
is a connected component of HS . By the same token, {C2} is a connected component of HS .

We are almost ready to proof the main theorem of this section. It only remains to discuss a particu-

lar technical subtlety of the statement. We would like to prove that if we remove edges of a permissible

split X ∪ Y of the reduced clique graph of G, we obtain another reduced clique graph, namely, the re-

duced clique graph of G′ = the disjoint union of G[VX ] and G[VY ] (where VX and VY are defined as

before). The problem is that some vertices of G may belong to both VX and VY , and as such, they will

appear in cliques of both G[VX ] and G[VY ], and appear both on edges of Cr(G)[X ] and Cr(G)[Y ]. How-

ever, in G′ each vertex of VX ∩ VY is represented by two distinct vertices. To fix this, we augment the

operation (L3) to do the following after removing the edges between X and Y . For every b ∈ VX ∩ VY ,

we replace b by b′ in each clique C ∈ Y that contains b and update the labels of the affected edges (so

that the label of each edge indicates the intersection of the two cliques that are the endpoints of the

edge). Then when considering G′, the disjoint union of G[VX ] and G[VY ], we implicitly assume that

the vertices of VX ∩ VY are replaced in G[VY ] by their prime (′) copies. This allows us to safely use the

operation (L3). With this in mind, we can finally dive into the proof of the theorem.

¶the name was chosen in analogy with the notion of a minor where we remove, contract edges, and remove isolated vertices.
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Theorem 8. If H ′ is a split-minor of Cr(G), then there exists a chordal graph G′ such that H ′ = Cr(G′).

Proof. By induction. Let H ′ be the graph obtained from Cr(G) by one of the three operations.

Case 1. We apply the rule (L1) to an isolated vertex of Cr(G). Then this vertex corresponds to a

maximal clique C of G that forms a connected component of G, and hence, Cr(G− C) = H ′.

For the rules (L2) and (L3), we observe that if Cr(G) is disconnected then the operations (L2) and

(L3) only affect one of its connected component while the other components remain the same. In fact,

an edge is permissible in Cr(G) if and only if it is permissible in some connected component of Cr(G),
and for every split of Cr(G), there exists an equivalent split of a connected component of Cr(G) where,

in particular, the edges of two splits are the same. Also, by definition, Cr(G) is the disjoint union of the

reduced clique graphs of the connected components of G, and it is connected if and only if G is. This

implies that it suffices to prove the remaining cases for connected graphs.

Thus, in what follows, we shall assume that both G and Cr(G) are connected.

Case 2. We apply the rule (L2) to a permissible edge e = C1C2 of Cr(G) with label S = C1 ∩ C2.

In other words, H ′ = Cr(G)/e. Let G′ be the graph we obtain from G by adding all possible edges

between the vertices of C1 and C2. We show G′ is chordal and Cr(G′) = Cr(G)/e.
First, we look at the vertex sets of the two graphs. Since G is connected, there exists, by Theorem 3,

a clique tree T of G that contains the edge e. By treating T as a tree representation and by contracting

e is its host tree and all its subtrees, we conclude that T/e is a clique tree of G′. This implies that G′ is

chordal, and that the vertex set of T/e is the same as the vertex set of Cr(G′). Also, by definition, the

vertex sets of T/e and Cr(G)/e are the same, since the vertex sets of T and Cr(G) are the same (T is a

clique tree of G). This proves that the vertex sets of Cr(G′) and Cr(G)/e are the same.

It remains to consider edges.

(1) Every edge of Cr(G′) is also an edge of Cr(G)/e.

Let CC′ be an edge of Cr(G
′), and suppose that CC′ is not an edge of Cr(G)/e. If neither of C,C′ is

the clique C1 ∪ C2, then CC′ is not an edge of Cr(G), and hence, there is a path P in G from a vertex

of C \ C′ to a vertex of C′ \ C with no vertex of C ∩ C′. However, G is a subgraph of G′, and hence,

P is a path in G′ implying that CC′ is not an edge of Cr(G′), a contradiction. So we may assume

C′ = C1 ∪C2. We conclude that we have no a ∈ C ∩ (C1 \C2) or no b ∈ C ∩ (C2 \C1), since otherwise a, b
is a path from a vertex of C1 \ C2 to a vertex of C2 \ C1 implying that C1C2 is not an edge of Cr(G), a

contradiction. So, without loss of generality, we may assume C ∩ C2 ⊆ C1. Since CC′ is not an edge of

Cr(G)/e, both CC1 and CC2 are not edges of Cr(G), and hence, there exists in G a path P from a vertex

of C \ C1 = C \ (C1 ∪ C2) to a vertex of C1 \ C with no vertex from C ∩ C1 = C ∩ (C1 ∪ C2). But then P
is also a path in G′ implying that CC′ is not an edge of Cr(G′), a contradiction.

(2) Every edge of Cr(G)/e is also an edge of Cr(G
′).

Let CC′ be an edge of Cr(G)/e, and suppose that CC′ is not an edge of Cr(G′). This implies that there

exists a path in G′ between a vertex of C \C′ and a vertex of C′ \C with no vertex in C ∩C′. Let P be

a shortest such path, and let a ∈ C \ C′ and b ∈ C′ \ C be the endpoints of P .

First, suppose that C′ is the clique C1 ∪C2. The minimality of P implies that b is the only vertex of

C1 ∪ C2 on P . Without loss of generality, suppose that b ∈ C1. This implies that CC1 is not an edge of

Cr(G) because of the path P . Hence, Lemma 7 implies that C is not in HS , since otherwise C and C1

are in different components of HS contradicting Theorem 4. Therefore, there exists c ∈ S \ C, and we

conclude that CC2 is not an edge of Cr(G) because P, c is a path from a ∈ C \ C2 to c ∈ C2 \ C with no

vertex of C ∩ C2. But then CC′ is not an edge of Cr(G)/e, a contradiction.

So we may assume that neither of C,C′ is the clique C1∪C2, and therefore, CC′ is an edge of Cr(G).
It follows that some edge xy of P does not belong to G. We must conclude x, y ∈ C1 ∪ C2, and without

loss of generality, we assume x ∈ C1 \ C2, y ∈ C2 \ C1, and the vertices a, x, y, b appear on P in this

order. We further conclude that no vertex of C1 ∪ C2 other than x, y belongs to P , because P is an

induced path in G′. In particular, P contains no vertex of S and contains exactly two vertices of C ∪C′.
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Now, let P1 and P2 denote the subpaths of P from a to x and from y to b, respectively. If there exists

c ∈ S \ (C ∩C′), then P1, c, P2 is a path of G containing no vertex of C ∩C′ implying that CC′ is not an

edge of Cr(G), a contradiction. Hence, we must conclude S ⊆ C ∩ C′, and so, C belongs to the graph

HS . In particular, C and C1 belong to different connected components of HS by Lemma 7, and hence,

C1C is an edge of Cr(G) with label S by Theorem 4. That is, C1 ∩C = S which implies that P1 contains

no vertex of C1 ∩ C. (Recall that P contains no vertex of S.) However, then P1 is a path of G between

a ∈ C \ C1 and x ∈ C1 \ C, and hence, CC1 cannot be an edge of Cr(G), a contradiction.

Thus combining (1)-(2) yields Cr(G′) = Cr(G)/e = H ′ as required.

Case 3. We apply the rule (L3) to a permissible split X ∪ Y of Cr(G) where S is the (common) label of

the edges between X and Y . Let VX ⊆ V (G) denote the union of maximal cliques in the set X , and let

VY ⊆ V (G) denote the union of maximal cliques in the set Y . Let G′ be the disjoint union of G[VX ] and

G[VY ]. We show that Cr(G
′) = H ′. That is, we show Cr(G[VX ]) = Cr(G)[X ] and Cr(G[VY ]) = Cr(G)[Y ].

First, we discuss the sets VX , VY . In particular, we show the following property.

(3) VX ∩ VY = S and there are no edges in G between the vertices in VX \ S and the vertices in VY \ S.

Since every vertex of G belongs to at least one maximal clique of G, we observe that every vertex of G
belongs either to VX or VY or both. Further, since there is at least one edge CC′ in Cr(G) where C ∈ X
and C′ ∈ Y and this edge has label S, we have S ⊆ C ⊆ VX and S ⊆ C′ ⊆ VY . Thus S ⊆ VX ∩ VY .

To prove that S ⊇ VX ∩ VY , suppose for contradiction that there exists x ∈ (VX ∩ VY ) \ S. Since

x ∈ VX ∩VY , there is a clique C ∈ X with x ∈ C, and a clique C′ ∈ Y with x ∈ C′. Let T be a clique tree

of G, and let P be the path of T between C and C′. Since C ∈ X and C′ ∈ Y , there exist consecutive

cliques C∗, C∗∗ on P with C∗ ∈ X and C∗∗ ∈ Y . So, x ∈ C∗ ∩ C∗∗, because x ∈ C ∩ C′ and T is a clique

tree. Further, T is a subgraph of Cr(G) by Theorem 3, and X ∪ Y is a permissible split. Hence, C∗C∗∗

is an edge of Cr(G) with label S. But then x ∈ S = C∗ ∩ C∗∗, a contradiction.

Finally, we show that there are no edges between VX \ S and VY \ S. If otherwise, there are

adjacent vertices x ∈ VX \ S and y ∈ VY \ S, and so there exists a maximal clique C of G with x, y ∈ C.

If C ∈ X , then y ∈ C ⊆ VX , and hence, y ∈ VX ∩ VY = S, a contradiction. So, C ∈ Y but then

x ∈ VX ∩C ⊆ VX ∩ VY = S, a contradiction.

Now, we are ready to prove Cr(G
′) = H ′. By symmetry, it suffices to show Cr(G[VX ]) = Cr(G)[X ].

(4) X is the set of maximal clique of G[VX ] .

First, consider a clique C ∈ X . Since C is a clique of G[VX ] by the construction of VX , it is also a

maximal clique of G[VX ], because it is a maximal clique of G. Conversely, let C be a maximal clique of

G[VX ]. Clearly, C is a clique of G, and hence, there exists a maximal clique C′ of G with C′ ⊇ C. Recall

that we have at least one edge in Cr(G) between X and Y . Hence, at least one clique of G[VX ] properly

contains S, and so C \S 6= ∅, because C is a maximal clique of G[VX ]. Also, recall that VX ∩VY = S. So,

C′ ∈ X , since otherwise we have C′ ⊆ VY , and hence, C = C ∩ C′ ⊆ VX ∩ VY = S, a contradiction. But

then C′ ⊆ VX , and hence, C′ = C because C is a maximal clique of G[VX ]. So, we conclude C ∈ X .

This shows that Cr(G)[X ] and Cr(G[VX ]) have the same vertex set. It remains to consider edges.

(5) CC′ is an edge of Cr(G)[X ] if and only if it is an edge of Cr(G[VX ]).

First, let CC′ be any edge of Cr(G)[X ]. Then CC′ is also an edge of Cr(G[VX ]), since any path in G[VX ]
between a vertex of C \ C′ and a vertex of C′ \ C is also a path in G.

Conversely, let CC′ be an edge of Cr(G[VX ]). Suppose that CC′ is not an edge in Cr(G)[X ]. Then

there is a path in G between a vertex a ∈ C \ C′ and a vertex b ∈ C′ \ C that contains no vertex of

C ∩ C′. Let P be a shortest such path. Since CC′ is an edge of Cr(G[VX ]), at least one vertex of P lies

outside VX . Let x and y (possibly x = y) be respectively the first and the last vertex on P outside VX .

Since a, b ∈ VX , we have on P a vertex x′ just before x, and a vertex y′ right after y. By the choice of

x, y, we conclude x′, y′ ∈ VX . Also, x, y ∈ VY \ S since x, y 6∈ VX and S ⊆ VX . So, since there are no

edges between VX \S and VY \S, we must conclude x′, y′ ∈ S. But then P is not an induced path, since

S is a clique by Theorem 1, a contradiction.
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So, combining (4) and (5) yields Cr(VX) = Cr(G)[X ]. By symmetry, also Cr(VY ) = Cr(G)[Y ], and

hence, we obtain Cr(G
′) = H ′ as claimed. That concludes the proof.

We now show that every reduced clique graph contains permissible edges and splits. We say that

an edge e of Cr(G) is maximal if there is no edge e′ in Cr(G) whose label strictly contains the label of e.
Similarly, an edge e is minimal if there is no edge e′ whose label is strictly contained in the label of e.

We note in passing that these two types of edges correspond respectively to the max-min and min-

min separators of [9] which play a particular role in the forbidden induced subgraph characterization

of path graphs in [17].

Theorem 9. Every maximal edge e in Cr(G) is permissible, and for every minimal edge e in Cr(G),
there exists a permissible split X ∪ Y of Cr(G) such that e is an edge between the sets X and Y .

Proof. Firstly, note that if an edge e is maximal, minimal, or permissible in Cr(G), then it is also

respectively maximal, minimal, or permissible in some connected component of Cr(G). Further, a

permissible split of the connected component of Cr(G) containing e can be augmented to a permissible

split of Cr(G) by arbitrarily adding other connected components of Cr(G) to one or the other side of the

partition. This implies that it suffices to prove the theorem for connected graphs G.

Let e = C1C2 be a maximal edge of Cr(G), and let C1, C2, C be a triangle in Cr(G) such that the edges

C1C and C2C have different labels. That is, if we denote S = C1 ∩ C2, S1 = C ∩ C1, and S2 = C ∩ C2,

then we have S1 6= S2. If S1 ⊆ S and S2 ⊆ S, then we conclude S1 = S2 = C ∩ C1 ∩ C2. So, without loss

of generality, we assume that there is a ∈ S1 \ S. If also b ∈ S \ S1, then a, b is path between a vertex of

C \ C2 and a vertex of C2 \ C with no vertex of S2 = C2 ∩ C, but then C2C is not an edge of Cr(G). We

conclude S ⊆ S1. However, e is a maximal edge, and hence, S1 \ S = ∅, a contradiction.

Next, let e = C1C2 be a minimal edge of Cr(G) with label S = C1 ∩ C2. Since G is connected, there

exists, by Theorem 3, a clique tree of T that contains the edge e. If we remove the edge e from T , we

obtain two subtrees; let X and Y denote the vertex sets of these two subtrees such that C1 ∈ X and

C2 ∈ Y . Further, let X0 ⊆ X denote the set all cliques C ∈ X with S ⊆ C, and let Y0 ⊆ Y be the cliques

C ∈ Y with S ⊆ C. We show that if C ∈ X and C′ ∈ Y , then CC′ is an edge of Cr(G) with label S if and

only if C ∈ X0 and C′ ∈ Y0. This will prove that X ∪ Y is a permissible split of Cr(G) as required.

Consider C ∈ X and C′ ∈ Y . Since T is a clique tree, we have C ∩ C′ ⊆ C1 ∩ C2 = S. Hence, if CC′

is an edge of Cr(G), we must conclude C ∩ C′ = S by the minimality of e, and therefore, C ∈ X0 and

C′ ∈ Y0. Conversely, if C ∈ X0 and C′ ∈ Y0, then C ∩ C′ = S because C ⊇ S, C′ ⊇ S, and C ∩ C′ ⊆ S.

Moreover, the edge e lies on the path in T from C to C′. Hence, by Theorem 5, we conclude that CC′ is

an edge of Cr(G).

We remark that not every permissible edge of Cr(G) is necessarily maximal; for instance, the edge

in Figure 1 labeled {a} between the cliques {a, g} and {a, h} is permissible, but it is not maximal

because {a, c} is the label of the edge between the cliques {a, c, d} and {a, b, c}.

We say that a graph is totally decomposable by a set of rules if there is a sequence of applications

of the rules that reduces the graph to the empty graph (the graph with no vertices).

Combining the previous two results, we can now conclude the following.

Theorem 10 (Split-minor decomposition). Every reduced clique graph is totally decomposable by

the rules (L1) and (L2), and is also totally decomposable by the rules (L1) and (L3).

Proof. Let H = Cr(G) be a minimal counterexample to the claim. Clearly, H has at least one vertex.

If H contains no edges, then it has an isolated vertex, and we can apply (L1). So, H has an edge, which

implies that it also has a minimal edge e and a maximal edge e′. But then Theorem 9 yields that e′ is

permissible, and hence, we can apply (L2). Also, H contains a permissible split X ∪ Y where e is one

of the edges between X and Y , and we can apply (L3). So, H is not a minimal counterexample.
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We close this section by noting an interesting connection between split-minors of reduced clique

graphs and algorithms for finding a maximum-weight spanning tree. If G is connected, we can, by the

above theorem, iteratively contract maximal edges in Cr(G) until the graph reduces to a single node.

Clearly, the contracted edges yield a spanning tree T of Cr(G), and it is not difficult to see that T is, in

fact, a clique tree of G. So, if at each step we choose an edge that is not only maximal but also has a

largest label, we construct the same tree that Kruskal’s algorithm [15] would on Cr(G). In other words,

we construct a maximum-weight spanning tree. Conversely, if T is a clique tree of G, we can iteratively

contract in Cr(G) the edges of T in decreasing order of their size, and each such edge is permissible at

the time when we contract it. This provides us with an alternative and algorithmic proof of Theorem 3.

A similar conclusion can be reached by iteratively removing permissible splits based on edges with

smallest labels. If X ∪ Y is a permissible split of Cr(G), then a clique tree of G can be obtained by

finding clique trees for the chordal graphs corresponding to Cr(G)[X ] and Cr(G)[Y ], and then adding

any edge from the edges of Cr(G) between X and Y . This behaviour can be observed in the Reverse-

delete algorithm [12] for finding a maximum spanning tree, in which we remove minimum-weight

edges unless they disconnect the graph; in our case, we remove all but one edge between X and Y .

4. Asteroidal number

In this section, we use the decomposition presented in Section 3, to characterize the asteroidal

numbers of chordal graphs. Recall that a set A of vertices of G is asteroidal if for any a ∈ A, all

vertices of A \ {a} belong to one component of G−N [a], and the asteroidal number a(G) of G is the size

of a largest asteroidal set in G. Note that if G is disconnected, then it follows from the definition that

the asteroidal number of G is the maximum over the asteroidal numbers of its connected components.

4.1. Asteroidal collection of cliques

First, we show that the asteroidal number of a chordal graph depends solely on the structure of its

reduced clique graph. We do this by relating it to a similar notion defined on reduced clique graphs.

We say that an edge e of Cr(G) is hit by a clique C if some edge of Cr(G) incident to C has the same

label as e. We say that a path P of Cr(G) is hit by a clique C if some edge on P is hit by C. Otherwise,

we say that P is missed by C, or that C misses P .

For instance, in Figure 1, the path P consisting of cliques {c, j}, {a, c, d}, {a, d, f} is hit by the clique

{b, c, i}, because the label of the edge between {c, j} and {a, c, d} is the same as the label of the edge

between {c, j} and {b, c, i}. However, P is missed by the clique {a, g}, since no edge of P has label {a}.

A collection A of cliques of G is an asteroidal collection of cliques if for all distinct C,C′, C′′ ∈ A,

there is a path in Cr(G) from C to C′ missed by C′′. As the reader would now expect, we shall prove,

in what follows, that G contains an asteroidal set of size k if and only if Cr(G) contains an asteroidal

collection of cliques consisting of k cliques. Before that, we need to show a couple of useful properties.

First, we remark that we shall implicitly make use of the following observation.

Lemma 11. An edge e of Cr(G) with label S is hit by a clique C if and only if S ⊆ C.

Proof. If e is hit by C, then some edge incident to C has label S implying S ⊆ C. Conversely, if S ⊆ C,

then C belongs to HS . Since e has label S, there are, by Theorem 4, at least two connected components

in HS . Hence, if C′ is any clique in a connected component of HS different from that of C, then, by

Theorem 4, CC′ is an edge of Cr(G) with label S. So, e is hit by C, since CC′ has the same label as e.

Next, using the following lemma will allow us to focus on clique trees only.

Lemma 12. Let G be a connected chordal graph, let T be a clique tree of G, and let C1, C2, C3 be distinct

maximal cliques of G. Then every path between C1 and C2 in Cr(G) is hit by C3 if and only if the path

in T between C1 and C2 is hit by C3.
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Proof. The forward direction is obvious, since T is a spanning tree of Cr(G) by Theorem 3. For the

backward direction, let P be a path in Cr(G) between C1 and C2 missed by C3, and let e be an edge on

the path of T between C1 and C2 that is hit by C3. Let S denote the label of e. We conclude S ⊆ C3.

Now, let T1, T2 denote the two subtrees of T we obtain by removing the edge e from T where Ci belongs

to Ti for i = 1, 2. Since C1 is in T1 but C2 is in T2, there exists on P an edge e′ having one endpoint

in T1 and the other in T2. Let S′ denote the label of e′. We observe that the path of T between the

endpoints of e′ contains the edge e, since the endpoints are not both in T1 or both in T2. It follows that

S′ ⊆ S ⊆ C3, because T is a clique tree. So, C3 hits e′, but then C3 also hits P by Lemma 11.

Finally, we are ready to prove the theorem advertised earlier.

Theorem 13. a(G) ≥ k if and only if Cr(G) contains an asteroidal collection A of cliques with |A| = k.

Proof. Firstly, if G is disconnected, then also Cr(G) is disconnected, since Cr(G) is the disjoint union

of the reduced clique graphs of the connected components of G. In particular, any asteroidal collection

of cliques in Cr(G) is, by definition, an asteroidal collection in some connected component of Cr(G).
Further, recall the asteroidal number of G is the maximum over asteroidal numbers of the connected

components of G. This implies that it suffices to prove the theorem for connected graphs G.

Suppose that a(G) ≥ k, and let A = {a1, . . . , ak} be an asteroidal set of G of size k. For each

i ∈ {1 . . . k}, let Ci denote any maximal clique of G that contains ai. Clearly, ai 6∈ Cj and Ci 6= Cj for

each i 6= j, since no two vertices of A are adjacent. We show that A = {C1, . . . , Ck} satisfies the claim.

Suppose otherwise, and without loss of generality, assume that every path from C1 to C2 in Cr(G)
is hit by C3. In particular, if T is a clique tree of G, then the path of T between C1 and C2 contains

an edge e hit by C3. Let S denote the label of e. We conclude S ⊆ C3. Now, let T1, T2 denote the two

subtrees of T we obtain by removing the edge e from T where Ci belongs to Ti for i = 1, 2. Recall that

A is an asteroidal set. So, there exists a path P in G from a1 to a2 such that a3 has no neighbour on

this path. Since a1 belongs to a clique in T1 and a2 belongs to a clique in T2, let us denote by y the first

vertex on P that belongs to a clique in T2. Note that y 6= a1, since otherwise a1 belongs to both a clique

in T1 and in T2 implying a1 ∈ S ⊆ C3 because T is a clique tree, a contradiction. Consequently, we have

a vertex x before y on P , and x is in no clique of T2 by the minimality of y. Since x, y are consecutive

on P , we have xy ∈ E(G), and hence, there is a clique in T1 that contains both x, y. So y ∈ S ⊆ C3,

because y also belongs to a clique in T2. But then y is a neighbour of a3 on P , a contradiction.

Conversely, let A = {C1, . . . , Ck} be an asteroidal collection of cliques, and let T be any clique tree

of G. Let T ′ denote the subgraph of T formed by taking all paths in T between the cliques C1, . . . , Ck.

Clearly, T ′ is a tree. Morever, we show that C1, . . . , Ck are the leaves of T ′. Otherwise, we conclude,

without loss of generality, that C3 belongs to the path of T from C1 to C2. But then C3 hits this path

which contradicts Lemma 12, since we assume that there is at least one path between C1 and C2 in

Cr(G) missed by C3. So we let CiC
′
i be the (unique) edge of T ′ incident to Ci, and let ai be any vertex of

G in Ci \ C
′
i. Further, we define A = {a1, . . . , ak}. Clearly, A is an independent set of G, since for all i,

the clique Ci is the only one in T ′ that contains ai. We show that A is also an asteroidal set of G.

Suppose otherwise, and, without loss of generality, assume that a1, a2 are in different connected

components of G − N [a3]. Let P = C(1), . . . , C(t) be the path in T ′ from C(1) = C1 to C(t) = C2.

By Lemma 12, P is missed by C3, and hence, no edge C(i)C(i+1) of P satisfies C(i) ∩ C(i+1) ⊆ C3.

Consequently, there exists xi in (C(i) ∩C(i+1)) \C3 for each i ∈ {1 . . . t− 1}, and P ′ = a1, x1, . . . , xt−1, a2
is a path in G from a1 to a2. Now, recall that a1, a2 are in different connected components of G−N [a3].
So a3 has a neighbour xi on P ′, and since C3 is a leaf of T ′, we must conclude xi ∈ C3, a contradiction.

4.2. Good split-minors

In the previous section, we showed that the asteroidal number of G can be deduced from the re-

duced clique graph of G. To utilize this, we now investigate the structure of reduced clique graphs
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with the help of the notion of a split-minor from Section 3. In particular, we show that we can contract

or remove some edges of Cr(G) without increasing the asteroidal number of the corresponding graph.

To make this work, we need to introduce a special variant of the notion of a permissible edge.

A clique C is said to be S-dominated,† if C is incident in Cr(G) to an edge with label S, and the label of

every other edge incident to C is S or a subset of S or a superset of S.

An edge e = C1C2 of Cr(G) with label S is good if e is permissible in Cr(G), and no clique in Cr(G) is

S-dominated unless at least one of C1, C2 is S-dominated.

For instance, the clique {a, g} in Figure 1c is {a}-dominated since all edges incident to {a, g} have

label {a}, but the clique {a, c, d} is not {a}-dominated because the edge between {a, c, d} and {d, e}
has label {d} 6⊇ {a}, {d} 6⊆ {a}. Further, the edge between {a, g} and {a, h} is good because {a, g} is

{a}-dominated, and the edge between {a, c, d} and {a, b, c} is good because no clique is {a, c}-dominated.

We say that Cr(G
′) is a good split-minor of Cr(G) if Cr(G

′) can be obtained from Cr(G) by a (possibly

empty) sequence of operations (L1), (L3), and the following operation:

(L2′) if e is a good edge, contract e.

Theorem 14. If Cr(G′) is a good split-minor of Cr(G), then a(G′) ≤ a(G).

Proof. We proceed by induction. If Cr(G′) is obtained from Cr(G) using the rule (L1) or (L3), then

each connected component of G′ is an induced subgraph of G, and hence, its asteroidal number is at

most a(G). This is implied by the fact that every path in an induced subgraph of G is also a path

in G. Hence, since every asteroidal set of G′ belongs necessarily to one of its connected components,

we conclude a(G′) ≤ a(G).
So, we may assume that Cr(G′) is obtained from Cr(G) using the rule (L2′) applied to a good edge

e = C1C2 with label S = C1 ∩ C2. If G is disconnected, note that Cr(G′) is obtained by contracting

e in some connected component of Cr(G). Recall that connected components of Cr(G) correspond to

connected components of G, and the asteroidal number of G is the maximum over the asteroidal

numbers of its components. This implies that it suffices to prove this case for connected graphs G.

By Theorem 8, recall that G′ is obtained from G by adding all possible edges between the vertices

in C1 ∪C2. Also, by Theorem 13, we have an asteroidal collection A of cliques of G′ where |A| = a(G′).
Since G is connected, let T be a (fixed) clique tree of G that contains the edge e (such a clique tree

is guaranteed by Theorem 3). Let T1 and T2 denote the two trees we obtain from T by removing the

edge e such that Ci belongs to Ti for i = 1, 2.

Recall that T/e denotes the tree we obtain from T by contracting the edge e = C1C2 to C1 ∪ C2. In

particular, T/e is a clique tree of G′. So, by Lemma 12, we can conclude that

(*) for all distinct C,C′, C′′ in A, the path of T/e between C and C′ is missed by C′′.

Also, we shall make use of the following observation based on Lemma 7 and Theorem 4.

(**) if a maximal clique C satisfies S ⊆ C, then C1C and C2C are edges of Cr(G) with label S.

To prove this, we observe that S ⊆ C implies that C is a vertex in HS , and, by Lemma 7, it is in a

different connected component of HS than both C1 and C2. So, by Theorem 4, we conclude that C1C
and C2C are edges of Cr(G) with label S. This proves (**).

We remark that, for simplicity, if P is a path in T , we shall write P/e for the path of T/e correspond-

ing to P . That is, P/e is obtained from P by (possibly) replacing cliques C1, C2 on P with the clique

C1 ∪ C2. Note that, by the construction of T/e, the labels of edges on P/e are the same as the labels

on P except (possibly) for the label S of the edge e. In other words, if a clique C hits an edge on P and

this edge is not e, then C also hits the path P/e.

†Note that this definition differs from the one that appears in [10] because, unfortunately, with that definition Theorem 14

is false (see Figure 4a for a particular counterexample).
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First, we prove the following.

(1) If C1 ∪C2 is in A, then a(G) ≥ a(G′).

Suppose that the clique C1∪C2 is among the cliques in A. If C,C′ are two cliques in A\{C1∪C2} such

that C is in T1 and C′ in T2, then the path from C to C′ in T/e contains C1 ∪ C2, and hence, is hit by

C1∪C2. But this contradicts (∗), since C,C′, C1∪C2 are cliques in A. So we may assume, without loss of

generality, that all cliques of A different from C1∪C2 belong to T1. We show that A′ = A\{C1∪C2}∪{C1}
is an asteroidal collection of cliques of G. Suppose that for some C,C′, C′′ ∈ A′, the path P between

C and C′ in T is hit by C′′. Since C,C′ belong to T1, P is a path of T1, and hence, it does not contain

the edge e. So, if C1 is not among C,C′, C′′, then P/e is a path of T/e from C to C′ hit by C′′, which

contradicts (∗), since C,C′, C′′ belong to A. Otherwise, if C1 is among C,C′, say C = C1, then P/e is

a path of T/e from C1 ∪ C2 to C′ hit by C′′, again contradicting (∗). Finally, if C′′ = C1, then P/e is a

path between C,C′ hit by C1 ∪ C2, impossible by (∗). This shows that A′ is an asteroidal collection of

cliques of G. So, by Theorem 13, we conclude a(G) ≥ a(G′) as required.

Now, we may assume that C1 ∪ C2 is not in A, and hence, A is a collection of cliques of G. If A
is also an asteroidal collection of cliques of G, then we again conclude a(G) ≥ a(G′) by Theorem 13,

and we are done. So, we may assume that A is not an asteroidal collection, and therefore, there exist

cliques C(1), C(2), C(3) ∈ A such that every path in Cr(G) from C(1) to C(2) is hit by C(3). In particular,

the path P in T from C(1) to C(2) is hit by C(3). It follows that C(3) misses P/e, since otherwise we

contradict (∗). Therefore, we conclude that e is an edge of P , and C(3) hits e. In particular, S ⊆ C(3)

which implies, by (**), that C1C
(3) and C2C

(3) are edges in Cr(G) with label S. Further, the cliques

C(1), C(2) are not both in T1 or both in T2, since e is on the path in T between C(1) and C(2). Hence,

without loss of generality, we may assume that C(i) belongs to Ti for i = 1, 2, and C(3) belongs to T2.

(Please refer to Figure 3a for a depiction of this and subsequent discussion.)

Since C(1), C(2) are cliques of G different from C1, C2, the edge e = C1C2 is not the first nor the last

edge on P . Hence, there exist cliques C+, C++ such that e+ = C1C
+ and e++ = C2C

++ are edges of P
different from e. We observe that if S ⊆ C+, then (**) implies that the edge e+ has label S. But then

P/e is hit by C(3), contradicting (∗). Hence, C+ ∩ C1 6⊇ S. Moreover, C+ ∩ C1 6⊆ S, since otherwise

C+ ∩ C1 ⊆ S ⊆ C(3) and e+ is again hit by C(3). This shows that C1 is not S-dominated. Similarly, we

conclude that C2 is not S-dominated. Hence, since e is a good edge, we conclude that C(3) is also not

S-dominated. Recall that C(3) is incident to an edge C1C
(3) with label S. This implies that there exists

a clique C∗ such that C(3)C∗ is an edge of Cr(G) with label S∗ = C(3) ∩ C∗ where S∗ 6⊇ S and S∗ 6⊆ S.

Recall that C(3) belongs to T2. We conclude that C∗ also belongs to T2, since otherwise the path

P ∗ in T between C(3) and C∗ contains the edge e which implies S∗ = C(3) ∩ C∗ ⊆ S, a contradiction.

It follows that P ∗ is a path of T2, since both endpoints of P ∗ are in T2. Moreover, since C(3)C∗ is an

edge of Cr(G), we conclude, by Theorem 5, that P ∗ contains an edge e∗ whose label is S∗. Therefore, we

denote by T2,1 and T2,2 the two trees we obtain from T2 by removing the edge e∗ such that C(3) belongs

to T2,1. Clearly, C∗ belongs to T2,2. Moreover, C2 belongs to T2,1, since otherwise the path of T between

C2 and C(3) contains the edge e∗ implying S = C2 ∩C(3) ⊆ S∗, a contradiction. Similarly, no clique C of

A belongs to T2,2, since otherwise the path of T between C and C(1) contains the edge e∗ implying that

C(3) hits this path, which contradicts (∗) because e 6= e∗. Finally, we are ready to prove the following.

(2) The set A∗ = A \ {C(3)} ∪ {C∗} is an asteroidal collection of cliques of G.

Suppose that A∗ is not an asteroidal collection of cliques of G, that is, there are cliques C,C′, C′′ in

A∗ such that the path P ′′ of T from C to C′ is hit by C′′. Let e′′ be an edge of P ′′ hit by C′′, and let

S′′ be the label of e′′. First, suppose that e′′ = e. That is, C′′ hits e, and we conclude S ⊆ C′′. So, by

(**), C1C
′′ and C2C

′′ are edges of Cr(G) with label S. This also implies that C′′ 6= C∗, since S ⊆ C′′ but

S 6⊆ C∗ because C(3) ∩C∗ 6⊇ S. Now, let P ′ denote the path of T from C(1) to C(3) (see Figure 3b). Since

C(1) is in T1 and C(3) is in T2, the path P ′ contains the edge e. Also, since C2C
(3) is an edge of Cr(G)

with label S, we conclude, by Theorem 5, that P ′ contains an edge e′, also with label S, on the subpath

of P ′ between C2 and C(3). But then e′ 6= e and P ′/e is hit by C′′, contradicting (∗).
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Figure 3: Cases in the proof of Theorem 14.

So, we may assume e′′ 6= e, and hence, we conclude that C∗ is one of C,C′, C′′, since otherwise

C,C′, C′′ are cliques in A and P ′′/e is hit by C′′ because e′′ 6= e, contradicting (∗).
First, suppose that C′′ = C∗. Then C,C′ are in A, and hence, they do not belong to T2,2 by the

remark above. This implies that no clique on P ′′ is in T2,2, and in particular, e′′ is not an edge in T2,2.

However, C∗ is in T2,2, and hence, the path from C∗ to the edge e′′ contains the edge e∗ (see Figure 3c).

This implies S∗ ⊇ S′′, since T is a clique tree and C∗ = C′′ ⊇ S′′. But then C(3) ⊇ S∗ ⊇ S′′, and hence,

P ′′/e is hit by C(3), contradicting (∗).
Thus, we may assume that that C∗ is among C,C′, say C′ = C∗ by symmetry. If e′′ belongs to the

path P1 of T between C and C(3) (see Figure 3d), then C′′ hits P1/e because e′′ 6= e, contradicting (∗).
We conclude that e′′ belongs to the path of T between C(3) and C′ = C∗, because T is a tree. This

implies S′′ ⊇ C(3) ∩ C∗ = S∗, because T is a clique tree. We conclude S∗ ⊆ S′′ ⊆ C′′.

Now, consider again the path P ′ of T between C(1) and C(3). Again, P ′ contains the edge e, because

C(1) in T1 but C(3) in T2. Further, by Theorem 5, P ′ also contains an edge e′, different from e, also with

label S, on the subpath of P ′ between C2 and C(3), because C2C
(3) is an edge of Cr(G) (see Figure 3e).

We conclude that e′ does not appear on the path P2 of T between C(1) and C′′, since otherwise C(3) hits

P2/e because e′ 6= e, contradicting (∗). So e′ belongs to the path of T between C(3) and C′′ because T is

a tree, and hence, S ⊇ C(3) ∩ C′′ because T is a clique tree. However, C(3) ∩ C′′ ⊇ S∗ because C′′ ⊇ S∗

and C(3) ⊇ S∗, and hence, we obtain S ⊇ S∗ which is a contradiction.

This proves that A∗ is an asteroidal collection of cliques of G, and |A∗| = |A| = a(G′). Therefore, by

Theorem 13, we conclude a(G) ≥ a(G′) as required.

We remark that the above theorem does not hold for arbitrary split-minors. For instance, consider

the graph G shown at the top of Figure 4a where Cr(G) is the graph at the bottom of Figure 4a. Then

the edge between cliques {a, b, c} and {b, c, d} is permissible, and contracting it creates a graph G′

shown with its reduced clique graph in Figure 4b. Clearly, {e, g, h, i} is an asteroidal set in G′, but not

in G. In fact, it can be easily verified that a(G) = 3 whereas a(G′) = 4. Observe that the contracted

edge is also maximal. However, it is not good because the clique {b, c, g} is {b, c}-dominated, but neither

{a, b, c} nor {b, c, d} is {b, c}-dominated.

We close by noting that the restrictions introduced in the operation (L2′) still allow for a total

decomposition of reduced clique graphs.

Theorem 15. Every reduced clique graph is totally decomposable by the rules (L1) and (L2′).
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Figure 4: Examples justifying the definition of a good edge.

Proof. If Cr(G) contains no edge, then we can apply (L1). Otherwise, Cr(G) has an edge, and so, it also

has a maximal edge e. Let S be the label of e. Recall that by Theorem 9, any maximal edge of Cr(G) is

permissible. So, if e is not good, there must exist an S-dominated clique C. Since C is S-dominated, it

is incident to an edge e′ with label S. Hence, e′ is also maximal, and so it is permissible by Theorem 9.

Consequently, e′ is good, because C is S-dominated, and we can apply (L2′).

4.3. Forbidden split-minor characterization

Recall that, by Theorem 14, if a(G) ≤ k, then also for every good split-minor Cr(G′) of Cr(G) we have

a(G′) ≤ k. So, since good split-minor is a partial order with no infinitely decreasing chain, this provides

us with a way to characterize the chordal graphs with asteroidal number at most k by “forbidding”

split-minors. We say that Cr(G) is a minimal forbidden split-minor for asteroidal number k, if a(G) > k
and each proper good split-minor Cr(G

′) of Cr(G) satisfies a(G′) ≤ k. Then a(G) ≤ k if and only if no

minimal forbidden split-minor for asteroidal number k is a good split-minor of Cr(G).
For instance, if G is the graph in Figure 5a where Cr(G) is depicted as Figure 5b, then a(G) ≥ k

as witnessed by the set A = {b1, . . . , bk}. Moreover, every proper good split-minor Cr(G′) of Cr(G) is

obtained by contracting (or removing) some edges with labels ai which implies a(G′) ≤ k − 1. Hence,

we conclude that Cr(G) is a minimal forbidden split-minor for asteroidal number k − 1.

We remark that the above Cr(G) is, what we call, a labeled k-star. More precisely, a labeled k-star

is any graph formed by taking k labeled edges that share a vertex (the labels of edges are arbitrary).

As we now prove, it turns out that every reduced clique graph that is a labeled k-star is a minimal

forbidden split-minor for asteroidal number k−1, and conversely, every minimal forbidden split-minor

for asteroidal number k − 1 is a labeled k-star. This yields a single graph (up to the labels of edges)

characterizing each asteroidal number in chordal graphs using the good split-minor ordering.

Theorem 16. If k ≥ 3 , then a(G) < k if and only if no labeled k-star is a good split-minor of Cr(G).

Proof. Suppose that a labeled k-star Cr(G′) is a good split-minor of Cr(G). Let C,C1, . . . , Ck be the

cliques Cr(G′) where CCi for i = 1 . . . k are the edges of Cr(G′). We show that A = {C1, . . . , Ck} is

an asteroidal collection of cliques of G′. Note that, since Cr(G′) is itself a tree, this implies that G′
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Figure 5: Examples of minimal forbidden split-minors.

is connected and that T = Cr(G′) is the unique clique tree of G′ by Theorem 3. To show that A is

an asteroidal collection, it suffices to show that no clique Ci hits any edge of Cr(G′) other than CCi.

Without loss of generality, suppose that C2 hits the edge CC1 whose label is S. We conclude S ⊆ C1∩C2,

and since CC1 is on the path of T from C1 to C2, we also conclude C1∩C2 ⊆ S. But then C1∪C2 = S, and

hence, by Theorem 5, C1C2 is an edge of Cr(G′), a contradiction. So, since A is an asteroidal collection

of cliques of G′, we conclude a(G′) ≥ |A| = k by Theorem 13, and since Cr(G′) is a good split-minor of

Cr(G), we obtain a(G) ≥ a(G′) ≥ k by Theorem 14 as required.

For the converse, let G be a graph such that Cr(G) is a minimal forbidden split-minor for asteroidal

number k−1. That is, a(G) ≥ k and each proper good split-minor Cr(G′) of Cr(G) satisfies a(G′) ≤ k−1.

By the remark above the theorem, it suffices to show that Cr(G) is a labeled k-star.

Since a(G) ≥ k, there exists, by Theorem 13, an asteroidal collection A of cliques of G with |A| = k.

By definition, the set A belongs to some connected component of Cr(G). Thus, the minimality of Cr(G)
implies that Cr(G) is connected, and hence, also G is connected. In particular, by Lemma 12, we have

the following property.

(*) for every clique tree T of G and all C,C′, C′′ in A, the path of T between C and C′ is missed by C′′.

For more clarity, we present the proof as a series of simpler claims.

(1) No two cliques in A are adjacent in Cr(G).

Let C1, C2 be cliques in A such that e = C1C2 is an edge of Cr(G). By Theorem 3, let T be a clique

tree of G that contains the edge e, and let T1, T2 be the two trees we obtain from T by removing the

edge e such that Ci is in Ti for i = 1, 2. Since k ≥ 3, there exists a clique C3 in A different from C1, C2.

Without loss of generality, we may assume that C3 belongs to T1, and so, the path of T from C3 to C2

contains the edge e. But then C1 hits this path which contradicts (∗).

(2) Every maximal good edge of Cr(G) is incident to one of the cliques in A.

Let e = C1C2 be a maximal good edge of Cr(G) such that both C1 and C2 are not in A. Let G′ be the

graph we obtain from G by adding all possible edges between the vertices of C1 ∪ C2. It follows from

the proof of Theorem 8 that Cr(G′) = Cr(G)/e. Since C1, C2 6∈ A, we conclude that A is a collection of

cliques of G′. We show that A is also an asteroidal collection of cliques of G′. If otherwise, there are

cliques C,C′, C′′ in A such that every path in Cr(G)/e between C and C′ is hit by C′′. However, by (∗),
there exists a path P in Cr(G) between C and C′ missed by C′′. Let P/e denote the corresponding path

in Cr(G)/e, that is, P/e is obtained from P by (possibly) replacing the cliques C1, C2 by C1 ∪ C2. It

follows that if S is the label of an edge of P/e, then P also contains an edge with label S. So, since P is

missed by C′′, also P/e is missed by C′′, but P/e is a path in Cr(G)/e between C and C′, a contradiction.

Now, since A is an asteroidal collection of cliques of G′, we conclude a(G′) ≥ k by Theorem 13.

However, Cr(G′) is a proper good split-minor of Cr(G), which contradicts the minimality of Cr(G).

(3) For every permissible split X ∪ Y of Cr(G), we have X ∩ A 6= ∅ and Y ∩ A 6= ∅.

Suppose otherwise, and without loss of generality, assume Y ∩ A = ∅. Let S denote the common label

of the edges between X and Y . Let T be a clique tree of G such that T [X ] has the most possible edges.
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We show that T [X ] is connected. Suppose otherwise, and let C,C′ be cliques in different components

of T [X ] such that the path P of T between C and C′ has smallest possible length. Let C∗ be the

clique on P right after C, and C∗∗ be the clique on P just before C′ (possibly C∗ = C∗∗). By the

minimality of C,C′, we have C∗, C∗∗ ∈ Y . Since T is a subgraph of Cr(G) by Theorem 3, we conclude

C ∩C∗ = C′ ∩C∗∗ = S which implies C ∩C′ ⊇ S. Also, C ∩C′ ⊆ C ∩C∗ = S because T is a clique tree.

So, by Theorem 5, CC′ is an edge of Cr(G) with label S. Now, let T ′ be constructed from T by replacing

the edge CC∗ by the edge CC′. Clearly, T ′ is a tree, and it is also a clique tree of G by Theorem 3, since

it has the same weight as T . However, T ′[X ] has more edges than T [X ], contradicting the choice of T .

Now, let VX denote the union of all cliques in X . The proof of Theorem 8 implies that Cr(G[VX ]) =
Cr(G)[X ]. So, since T [X ] is connected, we conclude that T [X ] is a clique tree of G[VX ]. Moreover, every

clique in A is also a clique of G[VX ] because Y ∩A = ∅. Hence, it follows from (∗) that A is an asteroidal

collection of cliques of G[VX ]. So, by Theorem 13, we conclude a(G[VX ]) ≥ k, but this contradicts the

minimality of Cr(G), since Cr(G[VX ]) is a proper good split-minor of Cr(G).

(4) Every edge of Cr(G) is minimal, maximal and good.

Suppose otherwise, and let e0 be any edge of Cr(G) that violates the claim and has smallest possible

label. Let S0 denote the label of e0. We claim that e0 is a minimal edge of Cr(G). If otherwise, there

exists an edge e′ with label S′ $ S0. So, e′ is not a maximal edge of Cr(G), and hence, it also violates

the claim. But this contradicts the choice of e0, since the label of e′ is smaller than the label of e0.

Next, by Theorem 3, let T be a clique tree of G that contains the edge e0. Let X , Y denote the

vertex sets of the two subtrees we obtain from T by removing e0. Since e0 is a minimal edge of Cr(G),
we conclude, using the proof of Theorem 9, that X ∪ Y is a permissible split of Cr(G). In particular, we

have A ∩X 6= ∅ and A∩ Y 6= ∅ by (3).

Now, we have two possibilities. If e0 is not a maximal edge of Cr(G), then Cr(G) contains a maximal

edge e, distinct from e0, whose label contains S0. We may assume that e is also good, since otherwise

we can use the proof of Theorem 15 to replace e with a good edge having the same label.

If e0 is a maximal edge of Cr(G), then it is not good because it violates the claim. Thus, again by

the proof of Theorem 15, there exists a maximal good edge e, distinct from e0, whose label is S0.

In both cases, we find a good maximal edge e, distinct from e0, whose label S satisfies S ⊇ S0.

Subject to this, we shall assume that e is chosen so that it has both endpoints in X or in Y if possible.

Since e is maximal and good, one of the cliques C1, C2 belongs to A by (2). Without loss of generality,

we assume that C1 ∈ A, and by symmetry, we also assume that C1 belongs to Y . By (1), we have

C2 6∈ A, and we further conclude that C1 is the only clique of A in Y . If otherwise, there is another

clique C′ ∈ A ∩ Y , and the path of T from C′ to any clique of A ∩X contains the edge e0. Hence, this

path is hit by C1, since S0 ⊆ S ⊆ C1, but that contradicts (∗).
Now, let G′ be the graph we obtain from G by adding all possible edges between vertices of C1 ∪C2.

By Theorem 8, we conclude that Cr(G′) = Cr(G)/e. We show that A∗ = A \ {C1} ∪ {C1 ∪ C2} is an

asteroidal collection of cliques of G′. Suppose otherwise, and let C,C′, C′′ be cliques in A∗ such that

every path in Cr(G)/e between C and C′ is hit by C′′. If P is a path in Cr(G), we as usual write P/e for

the corresponding path in Cr(G)/e obtained by (possibly) replacing cliques C1, C2 on P by C1 ∪ C2. We

again conclude that the label of each edge of P/e appears on some edge of P .

First, if C1 ∪C2 is not among C,C′, C′′, then C,C′, C′′ ∈ A, and the path P of T between C and C′ is

missed by C′′ by (∗). Hence, P/e is a path of Cr(G)/e between C and C′ missed by C′′, a contradiction.

Similarly, if C1∪C2 is among C,C′, say C′ = C1∪C2, then C,C′′ ∈ A and the path P of T between C and

C1 is missed by C′′ by (∗). But then P/e is a path in Cr(G)/e between C and C′ = C1∪C2 missed by C′′.

So, we may assume that C′′ = C1 ∪ C2. Thus C,C′ ∈ A, and we let P denote the path of T between

C and C′. Recall that we assume that all cliques in A except for C1 belong to X . Then also each clique

on P is in X , since C,C′ are in X and T [X ] is connected. By (∗), we conclude that C1 misses P .

If C2 also misses P , then we conclude that P/e is missed by C′′ = C1 ∪ C2, since the label of each

edge incident to C1 ∪ C2 in Cr(G) appears on some edge incident to C1 or C2 in Cr(G). This contradicts

our assumption, and hence, we may assume that C2 hits P . In particular, let e∗ be an edge of P hit by
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C2, and let S∗ denote the label of e∗. Recall that C1 ∈ Y and all cliques on P are in X . If also C2 ∈ Y ,

then the path of T between C2 and the edge e∗ contains e0, and we conclude S∗ ⊆ S0 because T is a

clique tree. However, then C1 hits P since S0 ⊆ C1, which contradicts (∗).
So, we may assume C2 ∈ X , and hence, S0 = S because X ∪ Y is a permissible split. Consequently,

e0 is a maximal edge and thus it is not good because we assume that it violates the claim. Now,

suppose that both C1 and C2 are not S-dominated. Recall that e is good and maximal. Hence, it is

also permissible by Theorem 9 which implies, by the definition of a good edge, that no clique in G is

S-dominated, since we assume that neither C1 nor C2 is. But then e0 is good, since it is also permissible

and S0 = S, a contradiction. This implies that one of C1, C2 is S-dominated.

Suppose first that C1 is S-dominated, and let C∗ be the endpoint of e0 that belongs to Y . We con-

clude C1 6= C∗, since otherwise e0 is good. Also, C∗ is in HS because C∗ ⊇ S0 = S, and in fact, C1 and C∗

are in different connected components of HS by Lemma 7, because e is permissible. So, by Theorem 4,

C1C
∗ is an edge of Cr(G) with label S, and hence, C1C

∗ is good, because C1 is S-dominated. But this

contradicts the choice of e, since both C1, C
∗ belong to Y . Hence, C2 must be S-dominated, and since e

is maximal and C2 hits e∗, we conclude S∗ ⊆ S. Then C1 hits P , because S ⊆ C1, contradicting (∗).
This shows that A∗ is an asteroidal collection of cliques of G′, and hence, a(G′) ≥ k by Theorem 13.

However, this contradicts the minimality of Cr(G), since Cr(G′) is a proper good split-minor of Cr(G).

(5) Cr(G) is a tree.

Let T be any clique tree of Cr(G). If Cr(G) is not a tree, there exists an edge e = C1C2 of Cr(G) that is

not an edge of T . Let S denote the label of e. Since e is not in T , there is at least one clique C different

from C1, C2 on the path of T between C1 and C2. Clearly, S ⊆ C because T is a clique tree. By (4),

we conclude that e is good, and hence, it is permissible. So, by Lemma 7, C is in a different connected

component of HS than both C1, C2, and, by Theorem 4, we have that C,C1, C2 is a triangle in Cr(G). We

now observe, by (1), that at most one of C,C1, C2 belongs to A. Hence, one of the edges of the triangle

C,C1, C2 is not incident to a clique in A, and is good and maximal by (4). But this contradicts (2).

(6) The diameter of Cr(G) is at most two.

Let T be a clique tree of G. Since Cr(G) is a tree by (5), we conclude T = Cr(G) by Theorem 3. If the

diameter of T is more than two, then T contains an induced path with cliques C1, C2, C3, C4 and edges

C1C2, C2C3, C3C4. By (2) and (4), one of C2, C3 is in A. Withour loss of generality, assume C2 ∈ A.

Consider the edges e1 = C1C2 and e2 = C2C3. By (4), the edges e1, e2 are minimal. For i = 1, 2, let

Xi, Yi denote the vertex sets of the subtrees we obtain by removing ei from T where C2 ∈ Xi. Using

the proof of Theorem 9, we conclude that Xi ∪ Yi is a permissible split of Cr(G), and so, Xi ∩A 6= ∅ and

Yi ∩A 6= ∅ by (3). Hence, it follows that the path of T between C ∈ Y1 ∩A and C′ ∈ Y2 ∩A contains the

clique C2, and so, C2 hits this path. But this contradicts (∗), because also C2 ∈ A.

Finally, since Cr(G) is a tree of diameter at most two by (5) and (6), it is necessarily a star. Moreover,

no two cliques in A are adjacent in Cr(G) by (1), and at least one endpoint of every edge of Cr(G) belongs

to A by (2) and (4). So since |A| = k > 1, this implies that Cr(G) is a labeled k-star.

The proof is now complete.

We now discuss some consequences of the above theorem. For instance, recall the class of interval

graphs. This is precisely the subclass of chordal graphs with no asteroidal triple [16]. In other words,

G is an interval graph iff G is chordal and a(G) ≤ 2. Interval graphs have been the subject of intensive

study in the past, and several structural characterizations are known for the class. One of such

characterizations is by minimal forbidden induced subgraphs, which consists of all cycles of length

at least four and the graphs presented in the top row of Figure 6. Below them we find the reduced

clique graphs of the respective graphs. Unlike this characterization, Theorem 16 provides us with a

single obstruction (up to the labels of edges) that characterizes the class, a labeled 3-star. Notice that

not all of the graphs in Figure 6 correspond to a 3-star, but, of course, each can be contracted to a 3-

star; for instance, in the first graph we can contract the edge between the cliques {a, d, e} and {a, d, f}
to obtain a 3-star, in the second graph we contract the three edges between {a, b}, {a, c} and {a, d}, etc.
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Figure 6: All chordal forbidden induced subgraphs for interval graphs and their reduced clique graphs (see [16]).

On the other hand, unlike in the case of interval graphs, not much is known about the structure of

chordal graphs with bounded asteroidal number. In particular, no forbidden subgraph characterization

is known, not even for small k ≥ 3. Even if such a characterization is found, we believe that it will

not likely be simple because of the many ways the paths between vertices of an asteroidal set can be

arranged. Fortunately, using reduced clique graphs, one has a simple tool in the form of Theorem 16

to succinctly describe the structure of these graphs, and this is a first such characterization.

5. Leafage

In this section, we discuss a different parameter of chordal graphs, namely, the leafage. Recall that

the leafage l(G) of a connected chordal graph G is defined as the smallest integer k such that G has

a tree representation, or equivalently, a clique tree with k leaves. If G is disconnected with connected

components K1, . . . ,Kt, we define l(G) to be the maximum among l(G[K1]), . . . , l(G[Kt]).
In the following, we discuss a connection between leafage and split-minors of reduced clique graphs.

Just like in the case of asteroidal sets, we need to consider a special type of permissible edges.

We say that Cr(G′) is a nice split-minor of Cr(G) if Cr(G′) can be obtained from Cr(G) by a (possibly

empty) sequence of operations (L1), (L3), and the following operation:

(L2′′) if e is a good and maximal edge, contract e.

Theorem 17. If Cr(G′) is a nice split-minor of Cr(G), then l(G′) ≤ l(G).

Proof. We proceed by induction. If Cr(G′) is obtained from Cr(G) by applying the rule (L1) or (L3),

then every connected component of G′ is an induced subgraph of some connected component of G, and

hence, it has a tree representation with at most l(G) leaves. This is easily seen by considering a tree

representation of the particular connected component of G with at most l(G) leaves and by removing

the subtrees that correspond to the vertices outside the subgraph. Hence, we conclude l(G′) ≤ l(G).
So, we may assume that Cr(G′) is obtained from Cr(G) using the rule (L2′′) applied to a good and

maximal edge e = C1C2 of Cr(G). Let S denote the label of e. If G is disconnected, then Cr(G′) is

obtained from Cr(G) by contracting e in some connected component of Cr(G). Recall that the leafage

of G is defined as the maximum over the leafage of its connected components. This implies that it

suffices to prove this case for connected graphs G.
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Now, since G is connected, it has a clique tree T with l(G) leaves. If T contains the edge e, then

T/e is a clique tree of G′. Clearly, the number of leaves of T/e is at most the number of leaves of T ,

which implies l(G′) ≤ l(G) as required. So, we may assume that T does not contain e. We show that,

because e is good and maximal, we can construct a clique tree T ′ of G that contains e such that T ′/e
has at most l(G) leaves. This will provide us with the same conclusion, that is, l(G′) ≤ l(G).

Let P denote the path of T between C1 and C2, and let C′
1 be the first clique on P after C1. Since e is

not an edge of T , we have C′
1 6= C2. Also, C′

1 ⊇ C1 ∩C2 = S, because T is a clique tree. So, C1 ∩C′
1 ⊇ S,

and since e is maximal, we must conclude C1 ∩ C′
1 = S. That is, C1C

′
1 is an edge of T with label S.

Suppose that C1 is S-dominated, and let C(1), . . . , C(t) be the neighbours of C1 in T other than C′
1

(possibly none). Let Si denote the label of the edge C1C
(i) for i = 1 . . . t. Since C1 is S-dominated and e

is maximal, we have Si = C1 ∩ C(i) ⊆ S. We conclude C′
1 ∩ C(i) ⊆ Si, since T is a clique tree. We also

conclude C′
1 ∩ C(i) ⊇ Si, since C′

1 ⊇ S ⊇ Si. So, Theorem 5 implies that C′
1C

(i) is an edge of Cr(G) with

label Si. Now, let T ′ be constructed from T by replacing the edge C1C
′
1 by e, and by replacing C1C

(i)

by C′
1C

(i) for each i = 1 . . . t. Clearly, T ′ is a tree, and it is also a clique tree by Theorem 3, since it has

the same weight as T . If T ′ has at most l(G) leaves, then so does T ′/e, and we are done.

So, we may assume that T ′ has at least l(G) + 1 leaves. We note that C1 is a leaf in T ′, and further,

C1 and C′
1 are the only cliques that (possibly) became leaves in T ′, but were not in T . Also, C2 is the

only clique that is not a leaf in T ′, but (possibly) was in T . However, if t ≥ 1, then C′
1 is not a leaf in

T ′, and if t = 0, then C1 is a leaf in both T and T ′. In both cases, it follows that T ′ has exactly l(G) + 1
leaves, and C2 has at least three neighbours in T ′. So, since C1 is a leaf of T ′ and C2 is not a leaf in

T ′/e, we have that T ′/e has l(G) leaves as required.

We may now assume that C1 is not S-dominated, and, by symmetry, also C2 is not S-dominated.

Since e is a good edge, every other clique is also not S-dominated. In particular, C′
1 is not S-dominated

and since it is incident to the edge C1C
′
1 whose label is S, there exists a clique C∗ such that C∗C′

1 is

an edge of Cr(G) whose label S∗ = C∗ ∩ C′
1 satisfies S∗ 6⊆ S and S∗ 6⊇ S. Let P ′ denote the path of T

between C∗ and C′
1, and let C∗∗ be the clique on P ′ just before C′

1 (possibly C∗∗ = C∗).

Suppose that C∗∗ also belongs to P (recall that P is the path in T between C1 and C2). This implies

C∗∗ ⊇ C1 ∩C2 = S because T is a clique tree. So, C∗ ∩C∗∗ ⊇ S, and since e is a maximal edge, we must

conclude C∗ ∩ C∗∗ = S. Further, since T is a clique tree, we have C∗∗ ⊇ C∗ ∩ C′
1 = S∗. This implies

S = C∗ ∩ C∗∗ ⊇ S∗ which contradicts the choice of C∗. Therefore, we must conclude that C∗∗ is not on

P , and hence, C′
1 has at least three neighbours in T . This implies that if we let T ′ be constructed from

T by replacing the edge C1C
′
1 by e, then T ′ is a clique tree of G, and it has at most l(G) leaves, because

C′
1 is not a leaf in T ′. So, T ′/e has at most l(G) leaves as required.

That concludes the proof.

We remark that the above theoreom does not hold for arbitrary good split-minors. For instance,

consider the graph G shown at the top of Figure 4c where Cr(G) is the graph at the bottom of Figure 4c.

The graph G has a clique tree with four leaves as indicated by thick edges in Cr(G). Further, the edge

between cliques {a, f} and {a, g} is good because no clique is {a}-dominated, but it is not maximal.

Contracting this edge yields a graph G′ depicted with its reduced clique graph in Figure 4d. The

graph G′, however, does not have a clique tree with four leaves. (The thick edges in Cr(G′) show a

sample clique tree with 5 leaves.) This is because every clique tree of G′ has leaves {n, f}, {g, o}, {b, j},

and {c, k}, but also one of {b, d, l}, {c, e,m}, {a, b, h}, and {a, c, i} is a leaf. A similar situation occurs

in Figure 4a where the edge between cliques {a, b, c} and {b, c, d} is maximal but not good, since the

clique {b, c, g} is {b, c}-dominated but neither {a, b, c} nor {b, c, d} is. Clearly, l(G) ≤ 3 as demonstrated

by the thick edges of Cr(G). After contraction, we obtain G′ shown in Figure 4b, and l(G′) = 4 because

{a, c, h}, {d, i}, {b, f}, and at least one of {a, b, e}, {b, c, g} are leaves in every clique tree of G′.

Now, just like in the case of asteroidal number, Theorem 17 allows us to define minimal forbidden

split-minors for the leafage; this time, of course, with respect to the notion of a nice split-minor. For

instance, if G is a graph such that Cr(G) is a labeled k-star (e.g., Figure 5ab), then T = Cr(G) is the

unique clique tree of G, and hence, l(G) = k. However, any contraction or split (edge) removal results
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in a forest whose connected components have at most k− 1 leaves. So, any labeled k-star is a minimal

forbidden split-minor for leafage k − 1. For leafage two, we have a(G) = l(G), since this case again

coincides with interval graphs, and hence, we can conclude l(G) = 2 if and only if no labeled 3-star is

a nice split-minor of Cr(G). (This follows from the proof of Theorem 16 in which we always contract

only maximal edges.) For larger values of leafage, there are other examples. For instance, consider the

graph G depicted in Figure 5c. The corresponding reduced clique graph Cr(G) is shown in Figure 5d.

It can be easily verified that a(G) = 3 and l(G) = 4. However, removing any permissible split or

contracting any permissible edge yields a graph G′ with l(G′) = 3. This shows that Cr(G) is a minimal

forbidden split-minor for leafage 3 that is not a labeled 4-star. In fact, using this example, one can

construct examples of minimal forbidden split-minors different from labeled k-stars also for any other

value of leafage. Unfortunately, we do not know whether this way we construct all minimal forbidden

split-minors for leafage, and so we do not have a theorem for leafage similar to Theorem 16.

Finally, we note that, since the edge considered in the proof of Theorem 15 is maximal, we imme-

diately have the following observation.

Theorem 18. Every reduced clique graph is totally decomposable by the rules (L1) and (L2′′).
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