
Dichotomy for tree-structured trigraph list homomorphism

problems

Tomás Federa, Pavol Hellc, David G. Schellc, Juraj Stachob

a268 Waverley St., Palo Alto, CA 94301, USA
bCaesarea Rothschild Institute, University of Haifa, Mt. Carmel, 31905 Haifa, Israel

cSchool of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, B.C.,
Canada V5A 1S6

Abstract

Trigraph list homomorphism problems, also known as list matrix partition problems,
generalize graph list colouring and digraph list homomorphism problems. While di-
graph list homomorphism problems enjoy a dichotomy (each problem is NP -complete or
polynomial time solvable), such dichotomy is not necessarily expected for trigraph list
homomorphism problems, and in the few cases where dichotomy has been proved, for
small trigraphs, the progress has been slow.

In this paper, we prove dichotomy for trigraph list homomorphism problems where
the underlying graph of the trigraph is a tree. In fact, we show that for these trigraphs
the trigraph list homomorphism problem is polynomially equivalent to a related digraph
list homomorphism problem. The result can be extended to a larger class of trigraphs,
and we illustrate the extension on trigraph cycles.

Key words: trigraph, list homomorphism, matrix partition, trigraph homomorphism,
surjective list homomorphism, dichotomy, trigraph tree

1. Introduction

A trigraph H consists of a set V = V (H) of vertices, and two disjoint sets of directed
edges on V – the set of weak edges W (H) ⊆ V × V , and the set of strong edges S(H) ⊆
V ×V . If both edge sets W (H), S(H), viewed as relations on V , are symmetric, we have
a symmetric, or undirected trigraph. A weak, respectively strong, edge vv is called a
weak, respectively strong, loop at v.

The adjacency matrix of a trigraph H , with respect to an enumeration v1, v2, . . . , vn
of its vertices, is the n × n matrix M over 0, 1, ∗, in which Mi,j = 0 if vivj is not an
edge, Mi,j = ∗ if vivj is a weak edge, and Mi,j = 1 if vivj is a strong edge. Note that a
trigraph H is symmetric if and only if its adjacency matrix is symmetric.

Email addresses: tomas@theory.stanford.edu (Tomás Feder), pavol@cs.sfu.ca (Pavol Hell),
dschell@cs.sfu.ca (David G. Schell), stacho@cs.toronto.edu (Juraj Stacho)

1This research was partially supported by P. Hell’s NSERC Discovery Grant. The facilities at
IRMACS SFU are gratefully acknowledged.

Preprint submitted to Elsevier April 4, 2011

We consider the class of digraphs to be included in the class of trigraphs, by viewing
each digraph H as a trigraph with the same vertex set V (H), and with the weak edge
set W (H) = E(H) and strong edge set S(H) = ∅. Conversely, if H is a trigraph, the
associated digraph of H is the digraph with the same vertex set V (H), and with the edge
set E(H) = W (H) ∪ S(H). Moreover, the underlying graph of the trigraph H is the
underlying graph of the associated digraph, and the symmetric graph of the trigraph H

is the symmetric graph of the associated digraph. To be specific, xy is an edge of the
underlying graph of H just if xy ∈ W (H)∪S(H) or yx ∈ W (H)∪S(H), and xy is an edge
of the symmetric graph of H just if xy ∈ W (H) ∪ S(H) and yx ∈ W (H) ∪ S(H). These
conventions allow us to extend the usual graph and digraph terminology to trigraphs. We
speak, for instance, of adjacent vertices, components, neighbours, cutpoints, or bridges of
a trigraph H , meaning the corresponding notions in the associated digraph of H , or in
its underlying graph; and we speak of symmetric edges, symmetric neighbours, etc. in a
trigraph H , meaning the edges, neighbours, etc., in the symmetric graph of H . When
we speak of a subgraph of a trigraph H , we mean a trigraph H ′ with V (H ′) ⊆ V (H),
W (H ′) ⊆ W (H), and S(H ′) ⊆ S(H). If W (H ′) = W (H) ∩ (V (H ′) × V (H ′)) and
S(H ′) = S(H) ∩ (V (H ′)× V (H ′)), we say H ′ is the subgraph of H induced on V (H ′).

Let G be a digraph and H a trigraph. A homomorphism of G to H is a mapping
f : V (G) → V (H) such that the following two conditions are satisfied for each u 6= v:

– if uv ∈ E(G) then f(u)f(v) ∈ W (H) ∪ S(H)

– if uv 6∈ E(G) then f(u)f(v) 6∈ S(H).

In other words, edges of G must map to either weak or strong edges of H , and
non-edges of G must map to either non-edges or weak edges of H .

If each vertex v of the digraph G has a list L(v) ⊆ V (H), then a list homomorphism
of G to H , with respect to the lists L (or respecting the lists L), is a homomorphism f

of G to H such that f(v) ∈ L(v) for all v ∈ V (G). Following standard practice [20], we
also call a homomorphism of G to H an H-colouring of G, and a list homomorphism of
G to H (with respect to the lists L) a list H-colouring of G (with respect to L).

Suppose H is a fixed trigraph. The H-colouring problem HOM(H) has as instances
digraphs G, and asks whether or not G admits an H-colouring. The list H-colouring
problem L-HOM(H) has as instances digraphs G with lists L, and asks whether or not
G admits a list H-colouring with respect to L. As noted earlier, H could be a digraph,
viewed as a trigraph (with W (H) = E(H), S(H) = ∅). Digraph homomorphism and list
homomorphism problems have recently been of much interest [20]. If necessary, we will
emphasize the distinction between trigraph list homomorphism problems and digraph list
homomorphism problems, depending on whetherH is a trigraph or a digraph respectively,
i.e., whether H has any strong edges or not. However, note that the input G is always a
digraph. We also note that loops in G are not considered in the definition of a trigraph
homomorphism, and we assume throughout that G is irreflexive (has no loops).

For a fixed trigraph H , the list H-colouring problem L-HOM(H) concerns the exis-
tence of vertex partitions of the input digraphs G. For instance, if H is the undirected
trigraph with V (H) = {0, 1}, with a strong loop at 1 and a weak edge joining 0 and 1,
then anH-colouring of G is precisely a partition of V (G) into a clique and an independent
set. Thus G is H-colourable if and only if G is a split graph [17]. Many graph partition
problems, especially those arising from the theory of perfect graphs, can be formulated as

2

trigraph homomorphism (or list homomorphism) problems; this is discussed in detail in
[9]. Equivalently, all these problems can be described in terms of the adjacency matrix of
the trigraph, in the language of matrix partitions and list partitions (see [2, 9, 11, 13]). In
this paper it will be more convenient to emphasize the trigraph (rather than the matrix)
terminology, since we are dealing with the structure of the trigraph H .

It is generally believed [15] that for each digraphH theH-colouring problem HOM(H)
is NP -complete or polynomial time solvable. (This is equivalent to the so-called CSP
Dichotomy Conjecture of Feder and Vardi [15].) One special case when the dichotomy
conjecture is known to hold is the case of undirected graphs (i.e., symmetric digraphs)
H . In this case, HOM(H) is polynomial time solvable if H has a loop or is bipartite and
is NP -complete otherwise [19]. For the list homomorphism problem L-HOM(H) for an
undirected graph H , it is shown in [8] that L-HOM(H) is polynomial time solvable if H is
a so-called bi-arc graph, and is NP -complete otherwise. Bi-arc graphs are a simultaneous
generalization of reflexive interval graphs and bipartite graphs whose complements are
circular arc graphs [8]. For general constraint satisfaction problems with lists, Bulatov
[1] has proved that dichotomy holds. Most relevant for this paper is the following result
explicitly classifying the complexity of L-HOM(H) when H is a digraph.

Theorem 1. [21] Let H be a digraph.
If H contains a digraph asteroidal triple, then L-HOM(H) is NP-complete.
Otherwise L-HOM(H) is polynomial time solvable.

Digraph asteroidal triples are introduced in [21]. Their definition is a bit technical,
and is not needed in this paper; they are analogous to asteroidal triples in graphs [22].
The important fact is that testing if a given digraph H contains a digraph asteroidal
triple can be performed in polynomial time [21].

By contrast, dichotomy is not known for trigraph list homomorphism problems.
In [5], it is however proved that for each trigraph H , the list H-colouring problem is

NP -complete or quasi-polynomial (of complexity nO(logk n)). All list H-colouring prob-
lems L-HOM(H) for trigraphs H with three or fewer vertices have been classified as
NP -complete or polynomial time solvable in [13]. For symmetric trigraphs with four
vertices, this has been accomplished in [2], with the exception of a single trigraph H ;
the corresponding problem has earned the name the stubborn problem. This problem has
only recently been established as polynomial time solvable [3]. Thus progress has been
slow, even in showing the (polynomial / NP -complete) dichotomy for trigraph list ho-
momorphism problems for concrete small trigraphs; the general dichotomy for trigraph
list homomorphism problems seems quite uncertain.

In this paper, we prove dichotomy for the class of trigraph trees, i.e., for trigraphs
whose underlying graph is a tree. It turns out that if H is a trigraph tree, then the list
H-colouring problem is polynomially equivalent to a certain digraph list colouring prob-
lem. Specifically, let H− be the digraph obtained from H by removing each vertex with a
strong loop, and each strong edge xy, together with its converse yx, if yx ∈ W (H)∪S(H).

Theorem 2. Let H be a trigraph tree.
Then L-HOM(H) is polynomially equivalent to L-HOM(H−).

Corollary 3. Let H be a trigraph tree.
Then L-HOM(H) is polynomial time solvable or NP -complete.

3

By the same techniques we can prove the dichotomy for a larger class of trigraphs.
The details of such a proof can be found in [12].

2. Trigraph trees

This and the next sections are devoted to a proof of Theorem 2. The proof is split into
several steps. First, we prove Lemma 4 which will allow us to deal with the cases when
H contains a strong edge or a pair of adjacent strong loops. Then we prove Lemma 5
which will help us handle the remaining cases of strong loops. Then the proof of the
theorem is presented. Below we briefly list other tools that will be used in the proof.

Let H be a trigraph tree, and let G with lists L(v), for v ∈ V (G), be an instance of
L-HOM(H). We say that the instance (G,L) is arc-consistent if for each u, v ∈ V (G)
and each x ∈ L(u) there exists y ∈ L(v) such that

(i) uv ∈ E(G) ⇒ xy ∈ W (H) ∪ S(H) and uv 6∈ E(G) ⇒ xy 6∈ S(H)

(ii) vu ∈ E(G) ⇒ yx ∈ W (H) ∪ S(H) and vu 6∈ E(G) ⇒ yx 6∈ S(H).

If the graph G is clear from the context, we just say that the lists L are arc-consistent.
If the lists L are not arc-consistent, we can in polynomial time modify L to arc-

consistent lists L′ such that G has a homomorphism to H that respects lists L if and
only if G has a homomorphism to H that respects lists L′. This is similar to enforcing
arc-consistency in digraphs, cf. [2, 9]. Thus, if convenient, we shall assume that the lists
L are arc-consistent. Note that if the lists L are arc-consistent, then either all lists L(v)
are empty, or all are non-empty.

Let S be a subset of V (H). We say that the instance (G,L) contains representatives
for S if for each x ∈ S, there exists v ∈ V (G) with L(v) = {x}. We say that the instance
(G,L) contains representatives if it contains representatives for V (H). (We shall again
refer to just lists L containing representatives if G is clear from the context.)

Note that if the instance (G,L) does not contain representatives, we can, in poly-
nomial time, construct a collection of at most (|V (G)| + 1)|V (H)| instances (G,Li), for
i = 1 . . . t, that all contain representatives (for some subsets of V (H)), and have the
following additional property. G has a homomorphism to H that respects the lists L if
and only if G has a homomorphism to H that respects the lists Li for some i. This is
again similar to the case of digraphs [2, 9]. In particular, for each vertex x ∈ V (H), we
either select a vertex of G and set its list to {x}, or we remove x from all lists in G.
The resulting lists Li contain representatives for some subset Si of V (H). Moreover, the
vertices of H − Si do not appear in Li. Therefore, the resulting instance is, in fact, an
instance of L-HOM(H ′), where H ′ is the subgraph of H induced on Si. For the problem
L-HOM(H ′), the lists Li contain representatives. Thus, if convenient, we shall assume
that the lists L contain representatives.

Now, let x, y be adjacent vertices in H . Let Hxy denote the subgraph of H obtained
by removing all edges between x and y. Note that since H is a trigraph tree, Hxy is a
trigraph with precisly two connected components, one containing x and one containing y.

Let Gxy denote the subgraph of G obtained from G by removing all edges uv with
x ∈ L(u) and y ∈ L(v) if xy ∈ W (H) ∪ S(H), and removing all edges uv with y ∈ L(u)
and x ∈ L(v) if yx ∈ W (H) ∪ S(H).

4

We say that the instance (G,L) is subgraph-consistent on Hxy if for all connected
components K of Hxy and C of Gxy, either L(v) ∩ K = ∅ for all v ∈ C, or there is a
homomorphism of C to K respecting the lists L. (We shall again say briefly that the
lists L are subgraph-consistent if the graph G is clear from the context.)

Again, if convenient, we may assume that the lists L are subgraph-consistent on
Hxy. If they are not, we can make them subgraph-consistent on Hxy by testing for each
connected component K of Hxy and C of Gxy, whether there exists a homomorphism of
C to K respecting the lists L. If this test fails for some choice of C and K, we remove the
elements of K from the lists of all vertices of C. The resulting instance of L-HOM(H)
has a solution if and only if the original instance does. To see this, note that if f is a
homomorphism of G to H respecting the lists L, then f is also a homomorphism of Gxy

to Hxy. If f maps a vertex of C to a vertex of K, then every vertex of C is mapped to K

by f , since homomorphisms map connected components to connected components. Thus
f restricted to C is a homomorphism of C to K respecting the lists L, a contradiction.

Furthermore, if convenient, we may assume that the instance (G,L) is simultaneously
arc-consistent, subgraph-consistent on Hxy, and contains representatives. To see this,
we first ensure that (G,L) contains representatives. Then we alternatively make the
instance arc-consistent, and subgraph-consistent on Hxy, until the lists stop changing.
(Since each step only removes elements from lists, this requires at most |V (G)||V (H)|
iterations.) The resulting lists are either arc-consistent, subgraph-consistent on Hxy,
and contain representatives, or they are all empty. Note that if the list homomorphism
problem for Hxy is polynomially solvable, then the above procedure is polynomial.

3. Separable instances

The following tool will allows us to handle the cases with strong edges and adjacent
strong loops. Let x, y be adjacent vertices of H . Let A,B denote the two connected
components of Hxy where x ∈ A and y ∈ B.

We say that the instance (G,L) is (or sometimes briefly just that the lists L are)
separable on x, y if for all v ∈ V (G):

(∗) if x ∈ L(v), then L(v) ∩ A = {x} and if y ∈ L(v) then L(v) ∩B = {y}.

(In other words, the instance (G,L) is separable on x, y if no list in G contains x with
another element of A, or y with another element of B.)

Lemma 4. Let H be a trigraph tree. Let x, y be adjacent vertices in H. If L-HOM(Hxy)
is polynomial time solvable, then L-HOM(H), when restricted to instances (G,L) that
are separable on x, y, is also polynomial time solvable.

Proof. We shall describe a polynomial algorithm for the restricted problem L-HOM(H).
Let (G,L) be an instance of L-HOM(H), separable on x, y. Assume that the instance is
arc-consistent and subgraph-consistent on Hxy. Note that if is not, then the procedure
making it both arc-consistent and subgraph-consistent on Hxy cannot violate (∗), since
it only removes elements from lists.

Let H1 denote the subgraph of H induced on {x, y}. Let H0 denote the trigraph
constructed from H1 by attaching a new vertex a, with a weak loop, adjacent to x by
a weak symmetric edge, and a new vertex b, with a weak loop, adjacent to y by a weak

5

symmetric edge. Let L0 denote the lists obtained from L by replacing each element of
A \ {x} by a and each element of B \ {y} by b. Let ϕ be the mapping of V (H) to V (H0)
that maps x to x, y to y, each vertex of A \ {x} to a, and each vertex of B \ {y} to b.
Observe that if there is a homomorphism f of G to H respecting the lists L, then there
is a homomorphism of G to H0 respecting the lists L0, namely ϕ ◦ f . We show that the
converse is also true.

(1) If there is a homomorphism of G to H0 respecting the lists L0, then there is also a
homomorphism of G to H respecting the lists L.

Suppose that g is a homomorphism of G to H0 respecting the lists L0. First, we
observe the following property of g:

(2) If C is a component of Gxy, then either g(C) ⊆ {a, x} or g(C) ⊆ {y, b}.

By definition of Gxy, the homomorphism g cannot map an edge of Gxy to xy or yx. The
image g(C) of a component C of Gxy is connected, and hence cannot contain both a
vertex in a, x and a vertex in b, y. This proves (2).

The property (2) ensures that there exists a homomorphism f of Gxy to Hxy, respect-
ing the lists L, such that if g maps a component C of Gxy to {a, x}, then f maps C to A;
otherwise, f maps C to B. Note that such a homomorphism f is guaranteed by our
assumption that the lists L are subgraph-consistent on Hxy. We will show that f is, in
fact, a homomorphism of G to H which will prove (1).

First, we observe that g = ϕ ◦ f . Indeed, suppose that g(v) = x for some v ∈ V (G).
Then x ∈ L0(v), and x ∈ L(v), which according to (∗) means L(v)∩A = {x}. Further, by
(2) and the definition of f , we have f(v) ∈ A. (In fact, the entire connected component
of Gxy containing v maps to A.) Therefore f(v) = x. Similarly, from g(v) = y, we
conclude f(v) = y. Now, suppose that g(v) = a. It again follows that f(v) ∈ A, and also
a ∈ L0(v), which implies that L(v)∩A \ {x} 6= ∅. This yields, by (∗), that x 6∈ L(v), and
hence, f(v) ∈ A \ {x}. Similarly, if g(v) = b, we obtain f(v) ∈ B \ {y}. It now follows
from the definition of ϕ that g = ϕ ◦ f .

Now, suppose that f is not a homomorphism of G to H . This means there is an
edge uv ∈ E(G) with f(u)f(v) 6∈ W (H) ∪ S(H), or there is a non-edge uv 6∈ E(G) with
f(u)f(v) ∈ S(H). First, consider an edge uv ∈ E(G) with f(u)f(v) 6∈ W (H) ∪ S(H).
Since g is a homomorphism of G to H0, we have g(u)g(v) ∈ W (H0) ∪ S(H0). Also,
f is a homomorphism of Gxy to Hxy. So, if we had uv ∈ E(Gxy), then f(u)f(v) ∈
W (Hxy)∪S(Hxy) which implies f(u)f(v) ∈ W (H)∪S(H), contrary to our assumption.
Thus, uv ∈ E(G) \ E(Gxy). This implies, by the definition of Gxy, that x ∈ L(u) and
y ∈ L(v), or that y ∈ L(u) and x ∈ L(v).

We assume that x ∈ L(u) and y ∈ L(v). (The proof when y ∈ L(u) and x ∈ L(v)
is similar.) From this, we conclude, by (∗), that L(u) ∩ A = {x} and L(v) ∩ B = {y}.
In particular, f(u) 6∈ A \ {x} and f(v) 6∈ B \ {y}, since f respects the lists L. If
f(u), f(v) ∈ {x, y}, then f(u) = g(u) and f(v) = g(v), since g = ϕ◦f . Hence, f(u)f(v) ∈
W (H) ∪ S(H) as g(u)g(v) ∈ W (H0) ∪ S(H0). This contradicts our assumption, thus f

maps at least one of u, v outside of {x, y}. Suppose that f(u) 6∈ {x, y}. This implies
f(u) ∈ B \ {y}, since f(u) 6∈ A \ {x}. Hence, g(u) = b because g = ϕ ◦ f . Thus
g(v) ∈ {y, b}, since y, b are the only neighbours of b in H0 and g(u)g(v) ∈ W (H0)∪S(H0).
Hence, f(v) ∈ B which yields f(v) = y, since f(v) 6∈ B \ {y}. We now show that this

6

contradicts the arc-consistency of the lists L. That is, we show that there does not exist
a w ∈ L(v) with f(u)w ∈ W (H) ∪ S(H). Otherwise, if such a w exists, we conclude
that w ∈ B, because f(u) ∈ B \ {y} and so f(u) has only neighbours in B. Therefore,
w ∈ L(v) ∩ B and L(v) ∩ B = {y}, and hence w = y. This is a contradiction as
w = y = f(v) and f(u)f(v) 6∈ W (H) ∪ S(H) by our assumption. So, no such w exists
and we must conclude f(u) 6∈ B \ {y}. By a similar argument, we can also conclude
f(v) 6∈ A \ {x}. Clearly, this is impossible, since we assume that f maps at least one of
u, v outside of {x, y}. This shows that no such edge uv exists.

Now, suppose that some uv 6∈ E(G) has f(u)f(v) ∈ S(H). Note that uv 6∈ E(Gxy)
and hence, f(u)f(v) 6∈ S(Hxy). This implies that f(u), f(v) ∈ {x, y}, since f is a
homomorphism of Gxy to Hxy and the only edges we removed from H to obtain Hxy

were between x and y. Since g = ϕ ◦ f , we conclude that f(u) = g(u) and f(v) = g(v).
So, g(u)g(v) = f(u)f(v) ∈ S(H) contradicting the fact that g is a homomorphism. This
proves that f is indeed a homomorphism of G to H which proves (1).

Now, from (1), we can conclude that to solve L-HOM(H) for the digraph G with lists
L in polynomial time, it suffices to find in polynomial time a homomorphism g of G to
H0 that respects lists L0. We remark that (∗) implies that the lists L0 are all of size at
most two, namely {x, y}, {x, b}, {y, a}, {a, b}, and their subsets. Thus finding g can be
reduced to an instance of 2SAT which can be solved in polynomial time. �

4. Restricting strong loops

For the cases when H contains strong loops, we shall make use of the following lemma.
It explains how to reduce every instance of L-HOM(H) to a set of polynomially many
restricted instances which are easier to handle.

We say that the instance (G,L) contains representatives for strong loops, if for every
vertex x of H with a strong loop, there exists y ∈ V (H) and Qx ⊆ V (G) such that

(⋆) L(v) ⊆ {x, y} for all v ∈ Qx, and x 6∈ L(v) for all v 6∈ Qx.

Note that we allow y = x, and as before, if G is clear from the context, we say that
the lists L contain representatives for strong loops.

Lemma 5. Let H be a trigraph tree, and let (G,L) be an instance of L-HOM(H) that
is arc-consistent and contains representatives. Then there exists a polynomial collection
of instances (G,Li), for i = 1 . . . t, each containing representatives for strong loops, with
the following additional property. G has a homomorphism to H that respects the lists L if
and only if G has a homomorphism to H that respects the lists Li for some i. Moreover,
the collection can be computed in polynomial time.

Proof. Let G′ be the symmetric graph of G. (Recall that G′ has edge uv just if both
uv and vu are in W (H) ∪ S(H).) Let G′′ be a minimal chordal completion [24] of G′.

Suppose that f is a homomorphism of G toH respecting the lists L. Consider a vertex
x of H with a strong loop. Then the set X = f−1(x) induces a symmetric clique in G,
that is, a clique in G′. It follows that there exists a maximal clique Q of G′′ such that
f(v) = x implies v ∈ Q. (In other words, Q is a maximal clique of G′′ that contains X .)

7

Recall that the lists L contain representatives. So, if vx is a representative for x,
i.e., L(vx) = {x}, then vx ∈ X , and, by the arc-consistency of L, all vertices of X are
symmetric neighbours of vx. We let Qx be the set of vertices consisting of vx and its
symmetric neighbours in Q, and conclude X ⊆ Qx.

If X = Qx, then we let y = x, and conclude that f(v) ∈ {x, y} if v ∈ Qx, and f(v) 6= x

if v 6∈ Qx. Otherwise, if X 6= Qx, we prove that f maps the vertices of Qx \X to at most
one connected component of H −x. To see this, suppose otherwise and let u, v ∈ Qx \X
be such that f(u) and f(v) are in different connected components of H − x. If P is a
path in G−X between u and v, then the image of P under f is a walk in H , since f is
a homomorphism. Thus, P contains a vertex w with f(w) = x. So w ∈ X , contradicting
the definition of P . Thus, u and v are in different connected components of G − X ,
and hence, in different connected components of G′ −X . However, this is not possible,
since u, v are adjacent in G′′ yet separated by the clique X in G′. (No minimal chordal
completion of a graph adds edges between vertices that are separated by a clique [24].)

We now let K be the (unique) connected component of H − x to which f maps the
vertices of Qx\X . Since H is a trigraph tree, we let y be the unique neighbour of x in K.
By the arc-consistency of L, we conclude that y is a symmetric neighbour of x, and that
f(v) = y for all v ∈ Qx \X . Thus, f(v) ∈ {x, y} if v ∈ Qx, and f(v) 6= x if v 6∈ Qx.

It now follows that we can restrict the lists L(v) to {x, y} for all v ∈ Qx, remove x

from the lists of v 6∈ Qx, and the homomorphism f still respects the modified lists L.
Applying, this argument for all strong loops of H , we eventually obtain lists that contain
representatives for strong loops, and the homomorphism f respects these lists.

It remains to show that there are only polynomially many different lists we can obtain
this way. We observe that there are only linearly many choices for the clique Q, and
thus, only linearly many choices for Qx. Further, there are only constantly many choices
for y and constantly many strong loops in H . Thus, the resulting collection of lists is
of polynomial size. Finally, we note that it can also be constructed in polynomial time,
since a minimal chordal completion of a graph can be computed in polynomial time [24].

That concludes the proof. �

This lemma allows us, if convenient, to assume that the lists L contain representatives
for strong loops. Moreover, as before, we may assume that the lists L simultaneously con-
tain representatives, contain representatives for strong loops, and are arc-consistent and
subgraph consistent onHxy for some edge xy ofH . This is possible, since making the lists
arc-consistent and subgraph-consistent on Hxy cannot violate (⋆) or remove representa-
tives (assuming a homomorphism respecting lists L exists). Further, if L-HOM(Hxy) is
polynomially solvable, this procedure runs in polynomial time.

Now, we are finally ready to present a proof of Theorem 2.

5. Proof of Theorem 2

First, we observe that the connected components of H− are induced subgraphs of H ,
since H is a trigraph tree. So, if L-HOM(H) is polynomial time solvable, then so is L-
HOM(H−). To see this, note that if f is a homomorphism of G to H−, then f maps each
connected component C of G to some connected component K of H−. We consider all
possible choices for K and try to find a homomorphism of C to K respecting the lists L.

8

We do this by restricting the lists of the vertices in C to K and solving L-HOM(H) for
this instance. This results in at most |V (G)||V (H)| instances of L-HOM(H).

Now, for the converse, we shall assume, by Theorem 1, that L-HOM(H−) is polyno-
mial time solvable, and show how to solve L-HOM(H) in polynomial time.

We proceed by induction on the number of strong edges and strong loops in H . If H
contains no strong edge or strong loop, then H = H− and there is nothing to prove. So,
we assume that H contains at least one strong edge or strong loop.

First, assume that H contains a strong edge xy. Consider an instance of L-HOM(H),
that is, a digraph G with lists L(v), for v ∈ V (G). Note that H− = (Hxy)−. This
implies that L-HOM(Hxy) is polynomially equivalent to L-HOM(H−) by induction, and
consequently, L-HOM(Hxy) is polynomially solvable. This allows us to assume that the
lists L are arc-consistent, subgraph-consistent on Hxy, and contain representatives.

If for some (and hence all) v ∈ V (G), the list L(v) is empty, the instance has no
list homomorphism to H . Otherwise, we shall use Lemma 4 to solve L-HOM(H) for G
with lists L. To do that, we need two observations. Firstly, we recall that L-HOM(Hxy)
is polynomially solvable. Secondly, we show that the lists L are separable on x, y. Let
A and B be the two components of Hxy where x ∈ A and y ∈ B. Suppose otherwise,
and first let v be a vertex of G with {a, x} ⊆ L(v) where a ∈ A \ {x}. Recall that
the lists L are arc-consistent and contain representatives. Let vy be a representative for
y, i.e., L(vy) = {y}. We note that the arc-consistency of L implies that vvy ∈ E(G),
since x ∈ L(v) and xy ∈ S(H). But then, again by arc-consistency, and the fact that
ay 6∈ W (H) ∪ S(H), we conclude that a 6∈ L(v), a contradiction. The same argument
proves the case when y ∈ L(v). This shows that the lists L are separable on x, y.
Therefore, using Lemma 4, we solve L-HOM(H) in polynomial time.

Next, suppose that H has a strong loop, say on a vertex x, but has no strong edges.
Consider an instance (G,L) of L-HOM(H), and assume that it is arc-consistent, contains
representatives, and contains representatives for strong loops (see Lemma 5).

Then there exists y ∈ V (H) and a set Qx ⊆ V (G) such that

(⋆) L(v) ⊆ {x, y} for all v ∈ Qx, and x 6∈ L(v) for all v 6∈ Qx.

In fact, by the proof of Lemma 5, we may assume that y is a symmetric neighbour
of x, i.e., that xy, yx ∈ W (H) ∪ S(H). Suppose that y = x. Then (⋆) implies that
L(v) = {x} for all v ∈ Qx, and x 6∈ L(v) for all v 6∈ Qx. Thus G has a homomorphism to
H respecting the lists L if and only if G−Qx has a homomorphism to H − x respecting
the lists L. Such a homomorphism can be found in polynomial time by induction.

Thus, we may assume that y 6= x. So, since we assume that H contains no strong
edges, we have xy, yx ∈ W (H). Further, since y 6= x, we may assume that the lists L

are, in addition, subgraph-consistent on Hxy. (See the discussion after Lemma 5.) For
this, note that L-HOM(Hxy) is polynomially solvable by induction, since (Hxy)− = H−.

There are three remaining cases:

Case 1: Suppose that y has no loop. If f is a homomorphism of G to H respecting
the lists L, then, by (⋆), Qx partitions into a symmetric clique and an independent set.
Namely, the symmetric clique is formed by the vertices v ∈ Qx with f(v) = x and the
independent set are the vertices v ∈ Qx with f(v) = y. In other words, the subgraph of
the underlying graph of G induced on Qx is a split graph [17]. Note that one can test if a

9

graph is a split graph in linear time, and there are only linearly many different partitions
of a split graph into a clique and an independent set [17]. Thus, by trying all possibilities,
we consider each a partition of Qx into Q1 ∪ Q2 where Q1 induces a symmetric clique
in G and Q2 is an independent set in G. For this partition, we construct lists L′ by
setting L′(v) = {x} for each v ∈ Q1, L

′(v) = {y} for each v ∈ Q2, and L′(v) = L(v)
for v 6∈ Qx. Afterwards, we make the lists L′ arc-consistent. It follows that G has a
homomorphism to H respecting the lists L if and only if G −Qx has a homomorphism
to H − x respecting the lists L′ for some choice of the partition Q1 ∪Q2. The existence
of such a homomorphism can be again decided in polynomial time by induction.

Case 2: Suppose that y has a weak loop. In this case, we proceed similarly to Lemma 4
and construct a homomorphism directly. Recall that A,B are the two connected compo-
nents of Hxy where x ∈ A and y ∈ B. We let f be a homomorphism of Gxy to Hxy such
that if C is a connected component of Gxy then f maps C to B if possible, otherwise, f
maps C to A. We emphasize that f only maps C to A if it is not possible to map it to
B. Such a homomorphism is guaranteed by the subgraph-consistency of L.

We show that f is also a homomorphism of G to H . Suppose otherwise, and first, let
uv be an edge of G with f(u)f(v) 6∈ W (H)∪S(H). Clearly, uv 6∈ E(Gxy) because f is a
homomorphism of Gxy to Hxy. So, by the definition of Gxy, we conclude that x ∈ L(u)
and y ∈ L(v), or that y ∈ L(u) and x ∈ L(v).

We shall assume x ∈ L(u) and y ∈ L(v). (The proof in the latter case is similar.)
First, we conclude f(v) ∈ B from the subgraph-consistency of L, the definition of f , and
the fact that y ∈ L(v). (In fact, f maps to B the whole component of Gxy that contains
v.) Also, since x ∈ L(u), we conclude u ∈ Qx, and hence, L(u) ⊆ {x, y} by (⋆). Note
that no vertex of B \ {y} is adjacent to x. So, since f(v) ∈ B and y has a weak loop,
we conclude, by arc-consistency, that yf(v) ∈ W (H) ∪ S(H). This yields f(u) 6= y, and
hence, f(u) = x since f respects the lists L. But now y 6∈ L(u), since otherwise f(u) ∈ B

by the definition of f . So, L(u) = {x} and the arc-consistency of L implies that f(v) = y.
(Recall that f(v) ∈ B and x is not adjacent to any vertex in B \ {y}.) This, however, is
a contradiction, since f(u)f(v) = xy and xy ∈ W (H).

So, no such edge uv exists. Therefore, there is uv 6∈ E(G) with f(u)f(v) ∈ S(H). In
particular, uv 6∈ E(Gxy) since Gxy is a subgraph of G. So, f(u)f(v) 6∈ S(Hxy) since f is a
homomorphism of Gxy to Hxy. However, S(Hxy) = S(H), and hence, f(u)f(v) 6∈ S(H),
a contradiction.

This proves that f is indeed a homomorphism of G to H as claimed earlier, and we
constructed it in polynomial time.

Case 3: Suppose that y has a strong loop. In this case, since the lists L contain
representatives for strong loops, we have a set Qy ⊆ V (G) and a vertex y′ ∈ V (H) such
that L(v) ⊆ {y, y′} for v ∈ Qy, and y 6∈ L(v) for v 6∈ Qy.

If y′ 6= x, then we have L(v) ⊆ {x, y} ∩ {y, y′} = {y} for all v ∈ Qx ∩ Qy, and
L(v) = {x} for all v ∈ Qx \ Qy. Thus, by arc-consistency of L, we may conclude
that G has a homomorphism to H respecting the lists L if and only if G − Qx has a
homomorphism to H − x respecting the lists L. By induction, the existence of such a
homomorphism can again be decided in polynomial time.

Therefore, we may assume that y′ = x. We now again use Lemma 4. To do that,
we observe the vertices Qx ∪ Qy are the only vertices with x or y on their lists, and
L(v) ⊆ {x, y} for each v ∈ Qx ∪Qy. Recall that A,B are the two connected components

10

of Hxy where x ∈ A and y ∈ B. So, if x ∈ L(v), then L(v)∩A = {x} since L(v) ⊆ {x, y}.
Similarly, y ∈ L(v) implies L(v)∩B = {y}. This shows that the lists L are separable on
x, y. Further, L-HOM(Hxy) is decidable in polynomial time by induction. Thus, using
Lemma 4, we can solve L-HOM(H) for G with lists L in polynomial time.

That concludes the proof. �

6. Extensions

In the previous sections, we have focused on the list homorphism problems for tri-
graphs H whose underlying graph is a tree. It turns out that the tools we used for this
characterization work in a more general context. In particular, we can describe a more
general class of trigraphs H for which an analogue of Theorem 2 is true. Unfortunately,
the description of these trigraphs is quite technical; the interested reader can find the
definition and the proofs in our preprint on arxiv.org [12].

Here, we only illustrate how this result applies to trigraph cycles, i.e., trigraphs H

whose underlying graph is a cycle. We assume that H contains at least one strong edge
or loop, otherwise, it is covered by Theorem 1.

We say that a trigraph cycle H is a good cycle if H has at least one of the following:

(i) two strong edges, or
(ii) three consecutive strong loops, or
(iii) two pairs of consecutive strong loops, or
(iv) a strong edge and a distinct pair of consecutive strong loops, or
(v) two strong loops joined by a nonsymmetric edge, or
(vi) a strong loop whose both neighbours have no loops, or
(vii) a strong loop having non-symmetric edges to its both neighbours, or
(viii) a strong edge whose (at least) one endpoint has no loop.

Theorem 6. [12] Let H be a good cycle.
Then the problem L-HOM(H) is polynomial time solvable or NP -complete.

The theorem covers almost all cases of trigraph cycles. In Figure 1, we list all the
remaining cases of trigraph cycles not covered by the above theorem. These are trigraph
cycles H that contain vertices x, y such that either xy ∈ S(H) and xx, yy ∈ W (H), or
all of xx, xy, yx, and yy are edges (weak or strong) but at least one is strong. (Only
three typical cases of this are shown in the figure.) All other edges and loops not shown
are weak. As far as we see, the complexity of the corresponding problems L-HOM(H) in
these cases is open; but we have not explicitly considered these problems.

7. Conclusions

We have shown that dichotomy holds for trigraph trees. By combining Theorem 1
and Theorem 2, we obtain an algorithm that decides, in time polynomial in the size of
the trigraph H , whether L-HOM(H) is NP-complete or polynomial time solvable.

Certain generalizations are similarly handled in [12]; this includes most trigraph cy-
cles, with the few exceptions illustrated in the Figure 1. For small trigraphs, all list
homomorphism problems for symmetric trigraphs with up to four vertices have now been
classified as polynomial time solvable or NP-complete by a combined effort of [2, 3, 4, 9].

11

http://arxiv.org/abs/1009.0358

+3 ��
��	
���
��	
�

x y
kk ++ ��
��	
���
��	
�

x y
kk ++ ��
��	
���
��	
�

x y
ii &. ��
��	
���
��	
�

x y

Figure 1: Example trigraph cycles H for which the complexity of L-HOM(H) is left open.

References

[1] A. A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Transactions
on Computational Logic, (2011). to appear.

[2] K. Cameron, E. M. Eschen, C. T. Hoàng, and R. Sritharan, The complexity of the list partition
problem for graphs, SIAM Journal on Discrete Mathematics, 21 (2007), pp. 900–929.

[3] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, The stubborn problem is stub-
born no more (a polynomial algorithm for 3-compatible colouring and the stubborn list partition
problem), in Proceedings of the twenty second annual ACM-SIAM symposium on Discrete algo-
rithms (SODA), 2011, pp. 1666–1674.

[4] C. M. H. de Figueiredo and S. Klein, Finding skew partitions efficiently, Journal of Algorithms,
37 (2000), pp. 505–521.

[5] T. Feder and P. Hell, Full constraint satisfaction problems, SIAM Journal on Computing, 36
(2006), pp. 230–246.

[6] T. Feder and P. Hell, Matrix partitions of perfect graphs, Discrete Mathematics, 306 (2006),
pp. 2450–2460.

[7] T. Feder, P. Hell, and W. Hochstättler, Generalized colourings of cographs, in Graph Theory
in Paris, Birkhauser Verlag, 2006, pp. 149–167. invited chapter.

[8] T. Feder, P. Hell, and J. Huang, Bi-arc graphs and the complexity of list homomorphisms,
Journal of Graph Theory, 42 (2003), pp. 61–80.

[9] T. Feder, P. Hell, S. Klein, and R. Motwani, List partitions, SIAM Journal on Discrete Math-
ematics, 16 (2003), pp. 449–478.

[10] T. Feder, P. Hell, S. Klein, L. T. Nogueira, and F. Protti, List matrix partitions of chordal
graphs, Theoretical Computer Science, 349 (2005), pp. 52–66.

[11] T. Feder, P. Hell, D. Král’, and J. Sgall, Two algorithms for general list matrix partitions, in
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), 2005,
pp. 870–876.

[12] T. Feder, P. Hell, D. G. Schell, and J. Stacho, Dichotomy for tree-structured trigraph list
homomorphism problems. Preprint http://arxiv.org/abs/1009.0358.

[13] T. Feder, P. Hell, and K. Tucker-Nally, Digraph matrix partitions and trigraph homomor-
phisms, Discrete Applied Mathematics, 154 (2006), pp. 2458–2469.

[14] T. Feder, P. Hell, and W. Xie, Matrix partitions with finitely many obstructions, Electronic
Journal of Combinatorics R58, 14 (2007).

[15] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory, SIAM Journal on Computing, 28 (1999),
pp. 57–104.

[16] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific Journal of
Mathematics, 15 (1965), pp. 835–855.

[17] P. L. Hammer and B. Simeone, The splittance of a graph, Combinatorica, 1 (1981), pp. 275–284.
[18] P. Hell, S. Klein, L. T. Nogueira, and F. Protti, Partitioning chordal graphs into independent

sets and cliques, Discrete Applied Mathematics, 141 (2004), pp. 185–194.
[19] P. Hell and J. Nešetřil, On the complexity of H-colouring, Journal of Combinatorial Theory B,

48 (1990), pp. 92–110.
[20] , Graphs and Homomorphisms, Oxford University Press, 2004.
[21] P. Hell and A. Rafiey, The dichotomy of list homomorphisms for digraphs, in Proceedings of the

twenty second annual ACM-SIAM symposium on Discrete algorithms (SODA), 2011, pp. 1703–1713.

12

http://arxiv.org/abs/1009.0358

[22] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on
the real line, Fund. Math., 51 (1962), pp. 45–64.

[23] D. G. Schell, Matrix partitions of digraphs, Master’s thesis, Simon Fraser University, 2008.
[24] R. E. Tarjan, Decomposition by clique separators, Discrete Mathematics, 55 (1985), pp. 221–232.

13

	Introduction
	Trigraph trees
	Separable instances
	Restricting strong loops
	Proof of Theorem 2
	Extensions
	Conclusions

