
This is it! Time to take everything you have learned and put it into use to create
the mightiest NXT soccer-playing bot the world has ever seen! This project will require
you to work with sensors, actuators, remote communications, planning and AI,
localization, and a dynamic environment that changes in real time.

Learning Objectives:

You will implement a soccer-playing robot able to participate in a one-on-one competition
for most goals scored.

You will apply your knowledge of sensors, sensor noise, and noise management in order
to provide your bot with reliable data for planning and action execution.

You will write software to handle a dynamic environment, with an opposing agent whose
behaviour cannot be predicted in advance.

You will gain practical experience working with vision-based systems, and understand
their limitations and potential pitfalls.

You will understand simple, state-based AIs capable of providing robots with a suitable
set of behaviours to handle specific tasks.

And in case you didn't already know: You will discover that soccer is a beautiful sport!

Skills Developed:

Working with a multi-component system. Sensors, processing, and actuators are not
on the same platform.

Writing code that performs carefully planned actions in the presence of inaccurate
information and noise.

Developing state-based AIs. Writing code that reacts appropriately to a changing
environment.

Reference material:

Your lecture notes on control systems, sensors, and reliable software design

The comments and explanations in the starter code.

As always: Be ingenious and creative. Bonus points for clever solutions to tough problems.

1CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Important Note: This project is designed for Linux. The starter code will not compile
or run on Windows/Mac. It also requires a playing surface and an NXT bot for most
of the testing and development. Therefore, you're strongly advised to work at the IC 406
Lab either in one of the workstations or on your own Linux laptop.

Why Robo Soccer?

There is a number of reasons why soccer is a very well suited task for testing embedded
system ideas.

- It is a real-world task that involves complex actions carried out with precision and
 speed.

- It imposes real time constraints on the embedded system which must respond
 appropriately to changes in the configuration of the play field. This forces
 the system to process incoming data and decide on suitable actions within a short
 time interval.

- It requires the use of more advanced sensors; these sensors provide richer information
 than we have used thus far, but are nevertheless noisy and their data requires careful
 analysis and interpretation.

- It requires integration of all the concepts we have studied thus far: code optimization,
 sensor and noise management, localization, building reliable software, responsing in
 real-time to sensor input, and AI/planning.

- Soccer-playing robots are cool!

This project provides you with an opportunity to bring together all the tools you have
acquired during the term, strenghten and improve your understanding of course
concepts, and apply the skills you have been developing over the past weeks toward
solving a challenging problem.

Make the most of this chance! Not many projects during your academic career will be
as challenging or demanding, but also not many will be as satisfying! Go make us proud!

Acknowledgements:

All the infrastructure for the project was developed during the summer of 2013 by

Kevin Lee – Bluetooth integration, AI testing
Per Parker – Systems integration, build chain, AI scaffold
David Szeto – Robot control API, AI and system testing
Paco Estrada – Image Processing, AI design

2CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Project Overview

As you have learned from the localization project, the NXT platform is somewhat limited
in what you can do with the sensors and CPU/memory on board the intelligent block.

For soccer playing, the robot must be able to perceive the playing field and determine
the locations of itself, the opponent, and the ball in order to determine its course of
action. The NXT's colour sensor is sadly inadequate for this, and the intelligent block
itself lacks sufficient memory and processing power to be able to handle a camera, or
to process information fast enough to play soccer at a reasonable pace.

Therefore, for this project, we will work with a multi-component system.

• The NXT bot will be remotely controlled (via its bluetooth channel)

• A laptop/desktop computer equipped with a webcam will do all the work of
 processing the soccer field image, planning actions, and sending appropriate
 commands to the bot

Below is an overview of the entire system from the point of view of player 1:

Similarly, player 0 will have a webcam and computer. The NXT bot here acts as a remotely
controlled drone. All the processing is done by the computer.

3

 Playfield with two bots and a ball

Player 1
webcam

Player 1 computer
- image processing
- planning/action selection

Playfield
image

robot
commands

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Structure of the Software Distribution

Download and uncompress the starter code. It will generate a utsc-robo-soccer
directory with all the modules that comprise the project code. The general structure
of the code is as shown below (files are within utsc-robo-soccer/src/):

What you need to read and understand:

imageCapture.h: You must understand what the blob data structure contains so you
 can use it.
robotControl.h and the README.txt in src/API/: These are the controls you have at your
 disposal for controlling the NXT bot.
RoboSoccer.c: This is the program entry point. You will need to change the NXT hex
 ID at the top of this file to match your NXT's bluetooth ID.

What you will need to read, understand, and expand:

roboAI.h, roboAI.c: Here's where you will implement your soccer playing code!

4

A.I.
Planning/action selection

roboSoccer.c
roboAI.h
roboAI.c

Image Processing
and graphical interface

imageCapture.h
imageCapture.c

Robot Control API
roboControl.h
robotControl.c

Processes webcam input
and generates a set of
blob structures to represent
the bots and the ball.

Provides a set of commands
to control the NXT bot

Uses the blob data from imageCapture
and determines what actions have to be
performed by the bot. Then uses the
RobotControl API to send the corresponding
commands to the bot.

Most of your work
will be done inside
roboAI.c

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Setting things up

1) Set up your play field

 You will need a rectangular playing field. Set it up on a neutral coloured surface. Ideally
use a gray surface similar to the colour of the classroom floors and lab at IC. This is
where your bot will play during competition day.

 You can use non-marking tape or any other form of delimiter on the lab floor, but try to
make it rectangular and large enough that your bot will have space to run/turn and the
ball can bounce around a bit.

2) Set up the webcam

Place the webcam somewhere high overlooking the entire field.

Call up 'gtk-v4l' to set up the camera's controls so you get a clean view of the field.

 The top image on the left shows
 the view immediately after
 calling the robo-soccer code,
 the camera's auto-adjust has
 made everything too bright and
 colours are washed out. Some
 regions in the image are
 over-exposed.

 The bottom image shows the
 view after adjusting parameters.
 Make sure to adjust the exposure
 manually, and boost saturation
 to 100%.

 Do not close gtk-v4l. Minimize
 it and keep it around so the
 camera doesn't go back to
 auto-adjust, or in case you need
 to tweak parameters during
 play.

 To reset the webcam, unplug it
 and plug it back in.

5CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

Compile the code and make sure there are no errors (you may have to re-compile
the nxtlibc-0.1 library in utsc-robo-soccer/Bluetooth/). First thing for you to do is run
the code and understand how to do the initial set up. From the command line, run:

>> ./src/roboSoccer /dev/video1 0 0

Here '/dev/video1' is the device identifier for the USB webcam. On some computers this
may have to be changed to '/dev/video0'. If you get an error starting up, check the /dev/
directory to find out the video device ID on your computer.

The command above will open a graphical user interface window (no buttons!) showing
the current image from the webcam. Make sure the webcam can see the entire
playfield.

Make sure the playfield is empty!

You now have to provide the locations of the playfield corners in the order shown below:

 Press 'm' on the graphical window
 to start the corner capture process.

 This brings up a green cross, use
 WASD and Shift + WASD to move
 the cursor to the corner location
 to be marked next. Press space
 to mark a corner. The corner
 position will be printed on the console.

 Once the four corners are marked, the
 image will turn black. At this point the
 playfield initialization is complete.
The program caches the corner calibration parameters. Once registered, you can
skip this step by pressing 'g' to load the cached values. This will work as long as you do
not move the camera, change the shape or size of the field, or change the lighting in the
room.

 At this point, the code is processing input from the webcam and looking for the bots
and the ball. The bots and ball are identified by unique colours. One bot is green, one
is red, and the ball is blue. This is why having a neutral-colour background helps.

 Place your bot and the ball on the playfield at this time. If you have not yet
built your bot, place its 'uniform' as a marker somewhere to test the set-up and image
processing initialization code.

6

 Sequence for marking playfield
corners

21

34

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

Why do we need to mark the four corners of the field?

 The corner locations are used by the code to rectify the image of the playfield. That is,
the code converts the image of the playfield into a rectangle so that distance and position
estimates are easier to make.

 The image rectification process employs a 2D Planar Homography to un-do the
perspective distortion from the camera. See

http://www.cs.toronto.edu/~jepson/csc2503/tutorials/homography.pdf

to learn how this works. Note that the rectification process distorts objects not at the
surface of the playfield. The images of the bots are distorted in the example above.
This means that there will be an unavoidable error when estimating the position
of the bots. If we wanted to have much more accurate position estimates, we would have
to either use 2 cameras and do 3D estimation, have a model for the robot, or
use a device with a built-in range finder such as a Kinect sensor.

7

 View from the webcam
View after rectification

Homography
estimation and
un-warping

Uncertainty in bot location
As a result of using a single
Image and no robot model.

1) Robot location is reported for the
 robot's coloured body

2) However, the robot's position on the field is further
 down the image. Our code can't estimate that since
 we don't know what your robot's height is.

3) Further, the position of the 'leg' is away from the
 robot's body or its location on the ground.

You need to perform height offset calibration to
correct the position estimate. Read on.

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

Image processing pipeline – What you see is what you get

 It is important to understand exactly what the image processing code gives you.
Here is the image processing pipeline after the initialization is complete:

1) Image capture: obtains a single frame from the webcam. Resolution is 1280x720.

2) Image rectification. Results in a rectangular, perspective-corrected field 1024x768
 pixels in size.

3) Background subtraction and colour pixel detection. During initialization, a picture of
 the empty field is captured and used for background subtraction. Each pixel is
 compared against this reference. Pixels similar to background are set to black.
 Pixels for colorful objects (hopefully the bots and the ball) are preserved.

 The goal of this step is to provide contiguous colour regions for the two bots and the
 ball. Because you are working with a webcam, environmental lighting conditions will
 have a strong effect on the results of this step. For this reason, the code provides
 adjustable controls for the main parameters governing colour-blob detection.

 On the image window:

 Use '[', and ']' to decrease/increase the colour detection level. Increase it if the code
 is detecting a lot of pixels outside the coloured regions of the bots and ball.

 Use '{' and '}' to decrease/increase the colour angle threshold. Decrease this value
 if the code is breaking the colour regions into many parts (e.g. the green bot's
 uniform results in multiple regions with slightly different shades of green).

 This tuning must
 be performed each
 time, as lighting
 changes over time.

 The end result of the
 image processing step
 will be a list of coloured
 blobs. Each blob, if all
 works well, will
 correspond to one of
 the three agents:
 green bot, red bot,
 and blue ball.

8

Before tuning. Note floor regions being
detected, and broken-up colour blobs

After tuning. Most non-agent blobs gone
and solid colour blobs

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Calibrating the height offset adjustment

In order to get a reasonable position estimate for the bot positions, you must provide
two calibration points for the program to use to estimate the hieght adjustment needed
anywhere else in the field.

Calibration should be performed for both bots at the same time prior to
competition. We can not use calibration data from your robot for the opponent since
the height of the robots will be different.

1) Place both robots midway between the top and bottom of the field. Make
 sure the center of your bot's uniform is aligned with the middle of both goals.

 - Press 'z' to start calibration (bots will be identified and tracked)
 - Press 'x' to record the first calibration location

2) Place both bots as close to the bottom of the field as possible

 - Press 'x' to record the second calibration point
 - Calibration data is now available and the code will cache it. Thereafter you can
 re-load it by pressing 'c' without the need to go through this process again.

9CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Bot tracking before (left) and after (right) calibration. Notice the
position of the bot has shifted down to account for the correction
pf the perspective projection error.

You're now all set to go! If you need to restart the program for
any reason you can now just press 'g' then 'c' to re-load cached
field rectification and perspective correction data.

Bots should be centered along
this line for the first calibration
step.

Bots should be located along
this line for the second
calibration step

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

The blob data structure – Here is all the sensing data you need

 Your code in roboAI.c does not have direct access to the image processing data. This
is intentional. You are not supposed to go into the image processing code other
than to learn how it works. The only information your A.I. needs is what is provided
by the image processing code in the form of a linked list of blob data structures.

 This linked list, imaginatively called 'blobs' in AI_main(), contains a set of blobs
representing recent objects found on the playing field.

 Things to note: There may be a large number of blobs, certainly more than 3
 Blobs corresponding to the bots/ball must be identified among those
 in the list (more on this later).

 While you are allowed to change the internal values of the blobs in the
 list, you are not allowed to modify the list itself by removing or

 inserting blobs. This list is controlled by imageCapture.c
 For each blob, the following data of relevance to you is stored:

 cx, cy, holds the current location of the blob's center.
 vx, vy, holds the current velocity vector for this blob. This is updated by the AI code.
 the velocity vector is not valid if the bot is rotating in-place.
 mx, my, heading direction as a unit vector. Last known heading for this blob. This
 vector remains constant if the blob is not moving. This may not be
 valid during rotation.
 dx, dy, direction vector for the blob, points along the long side of the rectangular
 uniform of your bot. This is valid at all times, but can point backward.
 size, x1, y1, x2, y2, size of the blob (in pixels) and coordinates of the bounding box
 as top-left and bottom-right.
 R,G,B, average colour of pixels on the blob.
 idtype, identifier for this blob. 0 for the ball, 1 for the green bot, 2 for the blue bot,
 anything else is not an agent in the game.

 Other data in the blob structure are used by the image processing code, However,
 the data listed above should be all that is needed to solve this project.

 Be sure to look into imageCapture.h and familiarize yourself with the blob data
 structure. Then look into roboAI.h and roboAI.c and see how blobs are being used
 in the code provided.

 The data inside the bot/ball blobs, and the data in the AI data structur is
 all you need to plan your strategy. Make sure you use all of it smartly.

10CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

The AI module – Here's where you do your work

You will be working most of the time within roboAI.c and roboAI.h to implement the
data processing, planning, and game playing logic.

Your bot will use a simple state-based A.I. which is nothing more fancy than a finite
state machine which has a number of possible states for the robot to be in. Each state
is associated with specific actions to be carried out, and events in the field trigger
state transitions.

As a simple example, consider the following mini A.I. for a very simple player:

This player is constantly chasing the ball, and once it reaches the ball, the ball gets
kicked. This simple A.I. does not consider a second player and its actions, or where the
ball is w.r.t. the goal; so your own A.I. will be significantly more complex, but the idea is
the same.

Each state is associated with one or more functions within the code. AI_main() will be
responsible for calling the appropriate function given the current state of the A.I.

The bot starts at states 0, 100, or 200, and the starter code provides the
Functions needed to perform agent ID and take the A.I. to the next state (1
in the diagram above, 1 or 101 or 201 in the code depending on the game
mode).

You are not allowed to change the code that handles the transition from state
zero to the next state in the A.I.

 11

0
Initial State

Identify Agents

1
Move toward

ball

Reached the ball

2
Kick

Ball kicked

Lost track of bot or reset

Lost track of bot
or reset

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

Data stored by the A.I.

Within roboAI.h you will find the AI_data structure which contains all the information
kept by the A.I. and used to play the game.

You must read the descriptions in roboAI.h, but for now, here's a summary of what is
contained there:

- A flag indicating which of the sides of the field belongs to the bot

- A flag indicating the colour of the bot's uniform

- The current A.I. State

- Motion flags that can be used to keep track of what the robot is doing

- Flags to indicate whether the bot, its opponent, and the ball have been identified

- Pointers to the blobs for the bot, the opponent, and the ball so you can access the
 data stored within the corresponding blob data structures.

- Position of the bot/opponent/ball on the previous frame

- Current velocity for bot/opponent/ball

- Current heading vector for bot/opponent/ball

You will have to use the information within the AI_data structure to determine what
state transitions must be carried out, and what actions must take place.

You can add data to the AI_data structure, but make sure there is a good
reason for doing so. We will penalize superfluous additions that only bloat
the A.I.

 12CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Understanding the Information Flow

In order to continue at this point, you need to have a working bot.

You are free to design your robot as you wish. But you may want to consider the following:

* If your bot is too big, you will have problems moving around the opponent and getting
 to the ball.

* Your bot should be able to wear either the green or blue uniform. And you have to be
 able to change the colour quickly since the colours will be assigned randomly for each
 actual match. Be sure to test all your work with both colours!

* Don't make the bot too tall! Remember that there is a localization error due to the
 offset between the bot's uniform and the floor.

* Make sure as much of the uniform's colour is visible as possible.

* Connect the motors to the correct ports! See the README.txt in src/API/

Once you have a working bot, you must pair it up with the computer running
your code via Bluetooth.

1) On the NXT, go to Bluetooth options, search for nearby devices, select the computer
 you want to pair the both with and start the pairing process.

 A pairing code will appear on the screen of the NXT. Input that code on the computer's
 pairing request box to complete the pairing.

2) Note the NXT's HEX key identifier. This must be placed at the top of RoboSoccer.c
 so that the code can talk to your bot.

 Re-compile and run the code. If when you run the code you see the following error:

write: : Transport endpoint is not connected
Failed to run _set_output_state command
_set_output_state Failed
_set_output_state Failed

 It means the code is not able to connect to your bot. Please check the bot is paired with
 the computer, the correct hex code is used in the roboSoccer.c, and your bot is
 powered on.

 If no error occurs, your bot is now under the command of roboSoccer.c

13CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Starting up the A.I.

Having successfully completed the initialization steps in the previous page, give the
built-in AI_main() a try. Currently the starter code provides the initialization step which
determines what blob corresponds to your bot, which blob corresponds to the opponent,
and which corresponds to the ball.

In order to start the processing by AI_main() press 't' on the graphical window. This
toggles A.I. processing on/off. When toggled on, the main loop calls AI_main() after
each frame.

When the code is initialized, the A.I. state is set to zero. When in state zero, AI_main()
performs agent identification – that is, it determines which of the blobs in the playfield
corresponds to which agent, and what agents are actually visible (e.g. it may be there
is no player 2, or that the ball is not there).

After pressing 't' you will see your bot move slowly forward for a short time, and the
graphical window should show boxes for the detected agents.

* Green box around the bot controlled by this program
* Red box around the opponent bot
* Blue box around the ball
The box colours are independent of the bot colour!

You will also see a heading vector for your bot and possibly the other agents.

14CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Image showing tracking of the bots and
ball.

A cross-hair marks the estimated location
Of the bots (after perspective offset
correction) and ball.

The white line is the estimated direction
vector (always aligned with your bot's
uniform's long side)

The yellow line is the estimated heading
vector.

Notice the heading and direction do
not agree. You must figure out when
and how to use each.

Updated by F. Estrada, Jun. 2015

Notes on what the starter code gives you

Besides the image processing, blob extraction, blob tracking, and A.I. initialization, the
user interface provides a manual override for the NXT.

At any point when the A.I. is commanding the bot to do the wrong thing
press 't' to toggle the A.I. off, followed by 'o' which sends an ALL_STOP
command to the NXT.

Pressing 'q' to end the roboSoccer program also sends an ALL_STOP to the bot.

During normal operation, the following NXT commands are available from the keyboard:

'i' - Forward drive (toggle on/off)
'k' - Reverse drive (toggle on/off)
'j' - Spin left (toggle on/off)
'l' – Spin right (toggle on/off)

Use these controls to re-position your bot. However, note these controls won't work well
while the A.I. is active (since your keyboard commands will compete with the A.I.'s
commands for the bot's attention).

Note that unexpected program termination (e.g. segfault) will leave the bot in the
last commanded state. If the bot is moving, it will keep moving until commanded to stop
or powered off. Be ready to stop the NXT manually to keep it from damage.

Important note on vectors and quantities estimated by
the image processing code

* Mind the velocity, direction, and heading vectors.
 Each is informative, and each has shortcomings. You are supposed to use the three of
 them in tandem to figure out what is going on with each bot and the ball.

* All quantities are noisy. The image processing pipeline is very noisy as a result of
 the webcam's low image quality. Blobs will change size and shape between
 frames, which in turn leads to noise in the estimates for all parameters (positions,
 velocities, headings). There is also the uncertainty caused by bots not being flat.

 Be sure to use the experience you gained during the Lander project to write code that
 includes noise management and that is robust to errors and imprecisions in the input.

That is all for the existing starter code. Let's get to your work!

15

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Your Tasks for this Project

The general tasks you must solve for this project are:

1.- Building a soccer NXT bot. [up to 10 marks]

Here, you do not want to build a big/fancy bot. It's going to be a competition so
think small/fast/accurate.

Having a very fancy design will not earn you as many bonus marks here as
having fancy software for the soccer playing part! Don't spend too much time
building your bot. Your bot should be able to wear either uniform on short notice.

2.- Create a logo for your robo soccer team. [up to 10 marks]

 Make a nice illustration for your bot's team. A particularly nice logo will earn you
 bonus marks!

3.- Design the state-based AI for the 3 game modes.

 The game modes your code will support are:

 0 – Standard soccer playing bot. The bot will play against an opponent and try
 to score more goals.

 1 – Penalty shot. The bot will be placed somewhere on the field, the ball will be
 placed at the center of the field, and the bot must score a goal.

 2 – Chase the ball. The bot continuously goes to whatever location the ball is
 at and kicks it.

 Each mode will have its own set of states:

 For mode 0 -> states 1 to 99
 For mode 1 -> states 101 to 199
 For mode 2 -> states 201 to 299

 The A.I. initialization step will leave the A.I. in state 1, 101, or 201 depending on
 the game mode selected by the user.

 Think carefully about:
 - what each mode must do
 - what states it should contain
 - what conditions (playfield configurations) will cause the A.I. to go to each state
 - what robot actions will be needed for each state

16

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Your Tasks for this Project

3.- Design the state-based AI for the 3 game modes (cont.)

 Be precise. It won't be very helpful when coding to have states with very general
 names such as 'play soccer'. Ideally, each state should identify a single, simple
 behaviour that can translate into one function in the code.

 Create a diagram showing the A.I. states and transitions for each game mode.
 This needs to be handed-in at the end of the project along with your bot's logo.

 The diagram should indicate what conditions cause each transition, and also note
 within each state what functions in the code are associated with the state.

 The A.I. designs and bot logo are worth [20 marks] (not counting bonus for
 cool logos!)

4.- Implement the state-based A.I. for penalty kicks. [20 marks]

 Add code to roboAI.c enabling your bot to carry out a penalty shot. The bot will
 be placed at some location within its own side of the field, it then must make its
 way to the ball and kick it toward the opposing side's goal.

 Speed is not the issue. Careful alignment counts. Power is not an issue either.

 This: http://www.youtube.com/watch?v=uki7MikTLWY
 is much better than this: http://www.youtube.com/watch?v=KZBOSEBOry4

 Think carefully about how to make the behaviours that comprise this A.I. Mode
 general enough that you can reuse them for the other two modes!

 In particular, do not hardcode the ball location at the center of the field, your code
 should be able to kick the ball even if it is placed elsewhere.

5.- Implement the state-based A.I. for chasing the ball. [10 marks]

 Add to roboAI.c the code needed to implement the ability to chase the ball around
 the field and kick it. Upon initialization, the bot should proceed to wherever the ball
 is and kick it. After kicking, it should then proceed to the new ball location and kick
 the ball again. This will continue unil the A.I. is toggled off.

 You should be able to reuse most of the code from step 4. You may have to add
 code to handle field boundaries (more on that later).

17

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Your Tasks for this Project

6.- Implement the complete A.I. for playing soccer against an opponent.
 [25 marks for completing this, plus up to 25 marks depending on how
 well your bot plays during the competition]

 This will be challending because you will not have a second (opponent) bot to
 test with. You must somehow come up with a suitable set of behaviours that
 will allow your bot to handle the presence of an opponent who is trying to score
 against you.

 Think about:

When to attack (chase and kick the ball)
 - How to optimize your path to the ball, and the kick direction

 When to defend and where to place your bot
 - Note it is illegal to park your bot inside your goal

When to back off (when two bots are in contention)
 - This is robot soccer, not robot wars

 All of these factors should be reflected somehow in your state-based A.I. for this
 mode.

 You should be able to reuse your code for the other two game modes.

 Here's where you get to show us how crunchy your bot can be. There will be bonus
 marks for very clever behaviour, for precise driving/kicking, for good strategy, and
 for being a good sports-bot!

Constraints and Game Rules

 1) Your robot must not leave the playing field. The actual game field has a
 raised border, so at best your robot will push it around, and at worst it will
 get stuck on the border. Make sure your bot does not rely on going out the
 visible field.

 2) Your bot must not charge/crash/kick the opponent. As mentioned above,
 we are not playing robot wars. Aggressive behaviour will be penalized, and
 if continued, will lead to your bot being disqualified.

 3) Your bot can not park itself at the goal. You can defend by putting your bot
 between the ball and the goal, but you can not park at the goal. If your bot stays
 parked inside or in front of the goal for more than 10 seconds, it will be penalized.

18

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Your Tasks for this Project

Constraints and Game Rules (cont.)

 4) Your bot can not hog the ball. Once your bot reaches the ball, it must push
 it or kick it. The bot is not allowed to grab, capture, or drive the ball across the
 field. You should use this knowledge to determine whether you should attack or
 defend given the positions of your bot, the ball, and the opponent.

 5) You can not intervene using the remote control. Other than to prevent
 damage to the bot(s). That is, if you notice your bot and the opponent are both
 trying to attack the ball and charging (unintentionally) into each other, you are
 allowed to use the keyboard controls to back off. However, the A.I. must not be
 toggled off, and you must not use the keyboard controls other than for the
 purpose of preventing problems.

That's All Folks!

 The rest is up to you. Plan carefully, work consistently, and you will have a
 cruncy soccer-playing robot to show at the end of the term!

But wait! There's help!

 Consulting: I will be available for consulting every Friday from 11am to 1pm.
 Drop by my office for any project-related issues or if you want
 input or advice on your design decisions. We can go to the lab
 if needed.

 Tutorials will be devoted to consulting for the rest of the term,
 drop by as needed to test, request help from your Tas, and work
 on your project.

 By email: As usual, email me directly with questions and bug reports.

19

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Hints and Advice

- Think carefully how to implement kicking (if you have decided to implement a kicking
mechanism). The kicking action must be carefully timed to avoid damaging NXT
components.

- Do not use absolute measurements. The size of your testing field, and the size of the
playfield we will use for the competition will likely be different. Navigate using vectors,
directions, angles, and relative distances.

- Legend has it that the NXT can be running its own code while responding to Bluetooth
commands. The NXT has its own sensors... those may be useful...

- Test under different illumination conditions!

- Be creative when testing how your bot can play against an opponent. You do have two
uniforms!

- Take some time to reflect on what you have learned through the course. What you are
doing is not easy or trivial. It requires knowledge and a good amount of crunchiness. So
feel good about your work!

- Give us a pretty good bot! We'll be grateful and generous with marking!

20

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

Project Timeline

Monday/Tuesday, Nov. 3-4 – Pick up your NXT and soccer kit at the end of lab
Start working on your project. Read the handout
and make sure you understand what you need to do for
the first progress check.

Tuesday, Nov. 10 – First Progress check. By this time your team:
* Must have read the handout carefully
* Compiled and tested the starter code
* Completed the construction of your NXT set
* Completed a diagram for the penalty kick A.I.
(nothing has to be implemented in code by this time)

Wed/Thu, Nov. 11-12 – Consulting sessions with your TAs. Drop by and ask questions

Tuesday, Nov. 17 – Second progress check. By this time your team:
* Must have completed the diagrams for the A.I. for all modes.
* Team Logo
* Must demonstrate working penalty kicking
* Must demonstrate working chase the ball behaviour

Wed/Thu, Nov. 18-19 – Consulting sessions with your TAs.

Tuesday, Nov. 24 – Last progress check. By this time your team:
* Must show a working soccer-playing A.I.
Your robot must have working code to play ball against
an opponent. We will have friendly matches at the lab
for this. The robot must demonstrate going for the ball
and kicking, defending, and chasing the ball. It
should respond to actions by the opponent.

Wed/Thu, Nov. 25-26 – Consulting sessions with your TAs.

Tuesday, Dec. 1 – Competition warm-up. Teams should have fully working robots
at this time. Friendly matches in the lab – fine tune your
strategy for the competition!

Thursday, Dec. 3 – Project 4 due date.

Monday, Dec. 7 – Robo-Soccer competition. 9am to 3pm. Pizza will be provided!

Tuesday, Dec. 8 to Wednesday, Dec. 9 – Return your NXT kit/equipment

* Schedules for progress checks will be done by Doodle poll, as usual.

21CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

What to Hand In

Create a single, compressed archive caller UTSC_roboSoccer_teamName.tgz which
contains your entire ./utsc-robo-soccer/ directory.

Submit this compressed archive electronically on mathlab by 9am on Nov. 30, 2014.

submit ­c cscc85f15 ­a P3 ­f UTSC_roboSoccer_teamName.tgz

Submit your state-based A.I. diagrams and your team logo either in electronic form
by email to the instructor, or in written form at the C85 drop-box by the above deadline.

Once you have done that, celebrate! You've completed all the work for C85!

Please study well for the final! I don't want anyone to get a surprise there!

22

Blobs before agent ID is performed Blobs after agent ID

CSC C85 – Embedded Systems
Final Project – NXT Robo Soccer

Updated by F. Estrada, Jun. 2015

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

