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Abstract

We present a novel, probabilistic algorithm for image noise removal. We show that

suitably constrained random walks over small image neighbourhoods provide a good

estimate of the appearance of a pixel, and that a stable estimate can be obtained with

a small number of samples. We provide a through evaluation and comparison of the

proposed algorithm over a large standardized data set. Results show that our method

consistently outperforms competing approaches for image denoising.

1 Introduction

The problem of removing noise from images, and the more general problem of reconstruct-

ing a signal that has been corrupted in some way have a long and well travelled history.

Considerable research exists both for general approaches, and for specific domains where

knowledge about the nature of the signal is used to customize or tune the estimation process.

Despite the amount of existing research, there is a gap between the introduction of state-of-

the-art denoising methods, and their broad adoption outside of very specific applications.

Several factors contribute to this situation. Current state-of-the-art methods are complex,

and either require training image sets that provide meaningful statistics about the domain

of application, or assume particular distributions based on empirical observation (see [21]

for example). This makes it difficult to implement, extend, or adapt these methods to work

with images from specific domains. In addition to the above, we lack a suitable benchmark

for comparing existing denoising methods. The result is that there are no solid foundations

upon which to make an informed choice of denoising method for a particular problem, in-

cluding medical imaging, astronomy, photography (particularly in low light conditions), and

restoration of archival footage.

With the above considerations in mind, we propose a novel algorithm for image de-

noising. Our method is conceptually simple, relying on Monte Carlo simulation to sample

a subset of all possible random walks that start at a given pixel, and using the probabil-

ity of travelling between pairs of pixels as a weight to combine them into an estimate of

what the noise-free pixels should look like. We provide a thorough comparison between our

method and three alternate algorithms on images from the Berkeley Segmentation Database

(BSD) [17]. We will show that our algorithm outperforms alternate methods representative
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of the state-of-the-art in image denoising. Our algorithm achieves superior denoising results

while preserving greater detail. We show applications of our algorithm on real-world images

from the domains of medical imaging, high-resolution digital photography, and astronomy,

and discuss potential extensions to our framework.

2 Previous Work

There is a large body of literature dedicated to the topic of image denoising. Our review

here is brief due to space limitations, and is intended to highlight the broad categories of

existing algorithms and to provide appropriate background for our work. For an extensive

and thorough review of image denoising literature please see [4].

We group image denoising algorithms into three broad categories. The first is comprised

of algorithms related to anisotropic diffusion or anisotropic smoothing [28]. Such algorithms

perform smoothing over subsets of pixels that are considered similar to one another, avoiding

blurring across strong image boundaries while reducing noise. The original formulation of

anisotropic image smoothing is due to Perona and Malik [19]. It has since been expanded and

improved upon, and has been shown to be directly related to robust estimation processes [3].

Methods based on minimizing total variation ([22],[6],[5]), as well as the bilateral filter and

its derivatives ([24],[2]) are further examples of this class of algorithms.

The second class of denoising methods exploits natural image statistics learnt over a

suitable training set. Typically, relevant statistics are represented through distributions of

wavelet coefficients (see for example [21], [20], and [7]). The denoising process involves

careful shrinkage of the coefficients to reduce the effects of noise. The third class of algo-

rithms uses sampling techniques to combine information from multiple image patches that

are similar in appearance. Since the structure in such patches is correlated, but the noise is

not, the set of patches can be used to determine the appropriate coefficient shrinkage that

reduces noise while preserving structure (see [9], and [12]), or the weights to be used for

combining the appearance of different pixels (as in [4], and [16]).

Regardless of the specific method, the goal of the process is to find an image that is as free

of visible noise as possible, while preserving fine image detail. Each category of algorithms

described above has specific limitations. Anisotropic smoothing methods perform well along

strong edges but suffer in the presence of texture. Algorithms that use coefficient statistics

can achieve their best performance only if suitable coefficient statistics are available for the

domain of application and have difficulty dealing with structured noise. Exemplar based

methods work well for repetitive image structure but have trouble preserving fine detail that

is not periodic in nature. As a consequence, there is still a need for simple yet effective

denoising algorithms that work well in images from multiple domains.

In what follows, we describe a novel denoising method related to robust anisotropic

image smoothing. The algorithm is able to significantly reduce the amount of visible image

noise while preserving fine detail and sharp edges. It is conceptually simple, and achieves

superior denoising performance compared to current state-of-the-art algorithms.

3 Denoising With Random Walks

The relationship between denoising and random walks has been noted previously. Black et

al. [3] point out a direct connection between random walks in 3×3 neighbourhoods and ro-
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bust anisotropic diffusion. Krim and Bao [13] further explore the application of such random

walks to 1-D signal denoising. In both of these previous efforts the random walk process is

limited to the immediate neighbours of a pixel, and the denoising process iteratively pro-

duces a denoised estimate. More recently, Azzabou et al. [1] apply random walks to learn

brightness distributions over image neighbourhoods. Models for these distributions are then

used with a particle filter for denoising. The problem with this approach is its high compu-

tational cost. We argue that accurately modelling the pixel neighbourhoods is not necessary

to obtain a good denoised estimate.

Our algorithm is based on random walks over arbitrary neighbourhoods surrounding a

given pixel. The size and shape of each neighbourhood are determined by the configuration

and similarity of nearby pixels. We draw inspiration from the use of random walks to deter-

mine pixel similarity in the context of image segmentation [18],[10]. In [10] an image, or in

general an arbitrary image patch of size n∗m is converted into a graph G(V,E), where V is a

set of nodes, one for each pixel, and E is a set of edges linking neighbouring nodes together.

The weight or strength of the edge e(i, j) ∈ E linking pixels i, and j is proportional to the

similarity between these pixels. The graph G is represented as a Markov matrix M.

Simulating t steps of a random walk on G involves computing a matrix Mt , and this

computation can be performed efficiently using the leading eigenvectors of M. It is thus

possible to simulate a random walk started at an arbitrary pixel x0 for an arbitrary number

of steps. Since the probability of transitioning between neighbouring pixels depends on

their similarity, the simulation yields a diffusion pattern or blur kernel [10] which favours

diffusion over pixels that are similar to x0. The estimated blur kernel gives the weights

with which pixels in the patch might be combined to produce an anisotropically smoothed

estimate of the starting pixel. While not used for denoising in [10], it was noted that blur

kernels should produce good estimates of the true values of pixels in the presence of noise.

The original blur kernel formulation, however, has some drawbacks. It requires the com-

putation of a very large graph and its associated eigenvectors. For an image of n×m pixels,

the Markov matrix M has (nm)2 entries and, though sparse, it quickly becomes unmanage-

able. Alternatively, we could compute the blur kernels over smaller neighbourhoods centred

at each pixel. But this would require a significant computational effort. We argue that,

similar to modelling pixel neighbourhoods in [1], computing accurate blur kernels is not

necessary to achieve an equivalent anisotropic smoothing effect. We propose replacing the

blur kernel formulation by direct random sampling within the neighbourhood of x0, and we

will show that it is possible to obtain stable denoising estimates using a small number of

random samples.

3.1 Random Walk Definition

Assuming that pixels within the neighbourhood of x0 are likely to have been generated by

the same random process, we want the weights used to mix these pixels during denoising to

depend on their similarity with respect to x0. At the same time, we require the random walk

to follow a smooth path from x0 to any other pixel in the neighbourhood, so the transition

probabilities should also depend on the similarity of neighbouring pixels along any given

path.

With this in mind, we define a random walk originating at pixel x0 as an ordered sequence

of pixels T0,k = {x0,x1, . . . ,xk} visited along the path from x0 to xk. Within this sequence,
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the probability of a transition between two consecutive pixels x j and x j+1 is defined to be

p(x j+1|x j) =
1

K
e
(
−d(x0,x j+1)2

2σ2 )
e
(
−d(x j ,x j+1)2

2σ2 )
, (1)

where K is a normalization constant, d(xi,x j) is a dissimilarity measure relating two im-

age pixels, and σ is a scaling parameter. The first term in Eq. 1 accounts for the similarity

between x0 and neighbouring pixels, it prevents blurring across soft brightness or colour

gradients. The second term imposes a preference for smooth transitions and prevents cross-

ing over strong edges. Note that typical anisotropic smoothing formulations [19], [3], as

well as the blur kernel definition from [10] include only the second term, while the bilateral

filter [24] employs only the first.

A sequence T0,k+1 is generated from T0,k by sampling the neighbourhood of xk and choos-

ing a neighbour with probability p(xk+1|xk). Under the first-order Markov assumption, the

probability of a sequence starting at x0 is given by

p(T1,k|x0) = Πk
j=1 p(x j|x j−1). (2)

We have thus far avoided discussing the form of d(xi,x j). This is to emphasize that the

above formulation can be applied to any domain as long as a suitable dissimilarity function

and neighbourhood structure can be defined. For our image denoising problem we use the

Euclidean distance between the RGB values of the corresponding pixels (assuming values

in [0,1]). But we could apply the same process to optical flow data or disparity maps for

example. Given the above, we propose a denoising algorithm based on repeatedly sampling

sequences T0,k starting at a specific image pixel, and combining the visited pixels along each

path to obtain the denoised estimate.

3.2 Stochastic Denoising

The denoised estimate ~I(x∗0) for a given pixel x0 is computed from a set of m random walk

sequences (trials) T i
0,k, i = 1, . . . ,m, all beginning at x0. For each pixel x j, j = 1, . . . ,k in

the sequence T i
0,k, we compute a mixing weight, W i

j based on p(T i
1, j|x0). Intuitively, since

the transition probabilities depend on pixel similarity, if this probability is large then there

is a smooth path of similar pixels between x0 and x j. Otherwise, the sequence has either

crossed a strong boundary, or has wandered into a region consisting of pixels dissimilar

to x0. However, we do not use p(T i
1, j|x0) directly. There are two reasons for this. First,

except for uniform image regions, the probability decreases too quickly to yield meaningful

weights. Second, and more importantly, a pixel may be visited by several random walks

of different lengths but the weight for the pixel should only depend on whether there is a

smooth path from x0 to x j, and not on the length of this path. We therefore use the geometric

mean of p(T i
1, j|x0) to define the weight

W i
j = p(T i

1, j|x0)
(1/ j), (3)

where j is the number of transitions in the sequence. Thus, in effect, W i
j is proportional to

the average log-transition probability along the path from x0 to x j.

The final denoised estimate~I(x∗0) is given by

~I(x∗0) =
1

C

m

∑
i=1

k

∑
j=1

W i
j
~I(x j), (4)
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Figure 1: Left: Test image and three selected patches. For each patch, we show the weights

(indicated by the brightness of the yellow hue) determined by our algorithm (SD) using

25 random walk sequences each with 50 steps. Also shown are the weights obtained by

computed blur kernels (BK) on the corresponding patches.Right: Variance of the denoised

estimate given random walks started with different random seeds as a function of the number

of trials. Here .01 corresponds to a 1%, or 2.56 gray-level variation. Clearly even for few

trials the estimate is stable.

where C = ∑
m
i=1 ∑

k
j=1 W i

j , is a normalization constant, and ~I(x j) is the colour of pixel x j.

We note that the above formulation does not consider a distance term like the one proposed

for bilateral filtering [24]. Spatial proximity is implicitly encoded in the neighbourhood

structure, and the scale of diffusion is controlled by a parameter discussed below.

Typical weight patterns generated by the above procedure are shown on the left in Fig. 1.

We compare these weights with the blur kernels computed for the same patches using the

formulation in [10], and note that the weights produced by the sampling process are quali-

tatively very similar to those obtained using the blur kernel computation. This is expected

since as the number of steps in the random walk tends towards infinity, the observed distri-

bution over a given neighbourhood would approach the stationary distribution of a Markov

matrix M with transitions given by p(x j+1|x j). These results indicate that the random sam-

pling process is assigning large weights to pixels that would be assigned to the same region

by segmentation methods like [10], and [23], or by image matting algorithms such as [15].

There are two remaining details with the above formulation that must be specified to

completely define the algorithm. One is the number of trials required to obtain a good es-

timate for ~I(x∗0). We expect that computing ~I(x∗0) with different random seeds will lead to

slightly different estimates. We need to determine how many trials are needed in order to

obtain an estimate of~I(x∗0) that is stable with regard to the randomness of the sampling pro-

cess. To explore this problem, we compute estimates for a randomly selected subset of pixels

on the test image shown in Fig. 1. At each pixel, we estimate the value of ~I(x∗0) over 250

separate runs of the algorithm starting with different random seeds, and different numbers of

trials. We then plot the variance in the estimate of~I(x∗0) as a function of the number of trials.

Results in Fig. 1 (right) show that only a small number of trials are required to obtain a stable

estimate for~I(x∗0). The lower variance in the green channel is an artifact of the color cast of

the picture used to compute this plot. The explanation for the small variance even on runs

with few trials per pixel is found in the length of each random walk. As long as the walks

are long enough, few trials are needed to obtain a reliable sampling of the neighbourhood.

The remaining issue is the length of each walk. A simple approach is to simulate a

pre-determined number of steps. However we find it more practical to set a threshold on
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Noisy Input Reference SD BM BF TV

Figure 2: Detail crops of sample BSD images showing typical denoising results for noise

with σ = 15, close inspection reveals that SD clearly achieves the best results, removing

most visible noise while preserving detail and avoiding artifacts such as those introduced by

BM (see the locomotive picture, for example).

p(T1,k|x0). Once the probability of a sequence has become less than a small threshold, e.g.

1× 10−6 the walk is terminated. This has the advantage of stopping early when sequences

have crossed strong image boundaries. Notice that were we to continue the walk, the effect

of pixels visited along that path would still be small since the probability of the sequence

goes down.

4 Evaluation and Comparison

We now provide a thorough evaluation and comparison of stochastic denoising (SD) and

three alternate denoising methods representative of the current state-of-the-art. We com-

pare our framework against the bilateral filter (BF) [24] using the implementation provided

at [14], against the block matching (BM) algorithm [9] found at [8], and against the total

variation (TV) method [5] using the implementation from [11]. Total variation and bilat-

eral filtering serve to compare our method against the closely related, anisotropic diffusion

class of algorithms, while block matching has been shown to produce excellent results and

represents stats-of-the-art algorithms based on coefficient-shrinkage. 1

The evaluation was carried out on the 300 images of the Berkeley Segmentation Database

(BSD). We evaluated the performance of the algorithms for removal of synthetic Gaussian

noise. To each image we added zero-mean Gaussian noise with standard deviations of 5,

10, and 15 (noise is added independently for each colour channel). The resulting 900 noisy

images comprise our testing set. The original 300 BSD images form our reference set.

Typically, the success of the denoising process is evaluated by comparing the peak signal-

to-noise ratio (PSNR) of the denoised and noisy images with regard to the reference. How-

ever, it is well known that PSNR does not correlate well with the visual quality of the re-

sults [26]. Instead we use the structural similarity framework of Wang et al. [27] with the

implementation found at [25]. Their structural similarity index (SSIM) considers three rea-

sonably independent image components: luminance, contrast, and structure. SSIM has been

1To facilitate additional comparisons our algorithm implementation and test data, as well as large versions of all

figures in this paper are available at http://www.cs.utoronto.ca/~strider/Denoise.

http://www.cs.utoronto.ca/~strider/Denoise
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shown to be a better predictor of subjective image quality than PSNR and other existing

quality measures. The SSIM index takes values in [0,1] where 1 indicates that the reference

and target images are identical.

4.1 Quantitative Comparison and Benchmark

To achieve an evaluation that is independent of input parameters we tested for each algorithm,

and for each image, a reasonable range of input parameters, and selected those that yield

the optimal SSIM value. This gives an optimistic measure of the denoising ability of each

method which assumes that the optimal parameters are known for each test case. Algorithms

were tested using uniformly sampled parameters from the following ranges: For stochastic

denoising, σ ∈ [.1, .35], sequence stopping threshold τ ∈ [1×10−5,1×10−3], 25 trials. For

the bilateral filter, spatial σ ∈ [2,6] pixels, range σ ∈ [.1, .35], and a window size of 21 pixels.

For the block matching method we used a σ ∈ [.1, .35]. Finally, for the total variation method

we used λ ∈ [.01,1]. These values were selected to cover the ranges of input parameters

that yield useful denoised estimates for each method. In total, the results presented below

required 28,000 denoising algorithm runs.

Results are shown in Fig. 3. Each plot shows the difference in SSIM index between SD

and one of the competing methods, if the difference is positive, the result obtained by SD has

higher quality (i.e. it better matches the luminance, contrast, and structure of the reference

image). Results are sorted by the magnitude of the SSIM difference between SD and each

alternate algorithm. This facilitates inspection and shows the fraction of images for which

SD produces better results than each competing method. For the worst noise level (σ = 15),

SD outperforms BF in 95% of the images, BM in 70%, and TV in 99.6%. Median SSIM

results for all algorithms and noise levels are shown in the table below. The left column

gives results when algorithm parameters are optimized for each image. The right columnt

gives results for the best, fixed parameter set over the entire test set. Stochastic denoising

consistently outperforms the competing methods. Ongoing experiments show that SD also

outperforms the non-local means method [4], [16], which achieves a median SSIM of .8210

with optimized parameters for the worst noise level.

Noise SD BM BF TV SD BM BF TV Noisy

Std. dev. optimal optimal optimal optimal fixed fixed fixed fixed input

σ = 5 .9728 .8844 .8952 .8557 .9727 .8844 .8952 .8557 .9568

σ = 10 .9378 .8819 .8961 .8270 .9360 .8819 .8961 .8270 .8306

σ = 15 .9004 .8797 .8768 .7806 .8946 .8797 .8764 .7768 .7542

Fig. 2 shows sample denoising results on typical BSD images. Close inspection shows

that SD provides the best results.The SD algorithm preserves fine detail while removing

a significant amount of visible noise. In contrast, we find that TV produces soft, blurry

results, BF does not remove as much of the noise, and BM, while providing good denoising,

sometimes over-smooths textures and introduces artifacts (see the locomotive in Fig. 2).

In terms of run time, stochastic denoising and block matching (the two top methods in

terms of denoising performance, and for which we have binary executables running on the

same hardware) are similar, consuming close to 15 seconds on BSD-sized images. BF and

TV can not be compared directly since they are implemented in Matlab. However we note

that total variation is, even in its Matlab implementation, faster than both SD and BM.
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Figure 3: Difference in SSIM index between SD and the three competing algorithms on the

BSD. Results are sorted by performance difference to facilitate interpretation. It is clear that

SD outperforms the competing methods on most BSD images, and across all noise levels.

Figure 4: Denoising results for real world applications. Top Row: Input images. Bottom

row: Results from stochastic denoising. We observe that SD does an excellent job of pre-

serving fine image detail while removing visible noise on a variety of input problems.

5 Applications and Extensions

To give a complete picture of the ability of our method to remove noise on typical appli-

cations, this section shows denoising results for typical examples of real-world denoising

problems. The goal is to illustrate the behaviour of stochastic denoising for images taken

under varying conditions, and with different types and amounts of noise. Fig. 4 shows de-

noising results for several applications. The first two images show cropped regions from

high-ISO, low light digital photographs. The next two show typical medical imaging results,

and the last picture shows a small region from Hubble’s Ultra-Deep Field map containing

noise. All of these images suffer from low signal-to-noise ratio.

We observe that stochastic denoising does an excellent job of removing large amounts of

visible noise, while accurately preserving very fine detail (see for example, the very small

text on the bottle shown in the leftmost image of Fig. 4, and details of stars and galaxies in

the Hubble Deep Field). This demonstrates that stochastic denoising provides very strong

noise removal capability over a wide range of imaging conditions.

5.1 Multi-pass Denoising

Typically, denoising methods assume that noise is uncorrelated across neighbouring pixels.

In reality, camera sensors often produce noise patterns in which larger-scale noise is visible.

Regular stochastic denoising will treat such noise as image structure. The question arises of
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InputInput SD 1−pass SD 2−pass SD 1−pass SD 2−pass

Figure 5: Noisy images from a cell-phone camera and detail crops. These photographs

show that for heavily corrupted images, the two pass algorithm achieves excellent denoising

results.

whether it is possible to modify SD to remove noise with different spatial scales.

The random walk formulation from Sec. 3 can be extended to incorporate information

across larger scales by allowing pixel transitions beyond 3× 3 neighbourhoods. The simi-

larity function can also be made to incorporate information across larger regions. Both of

these approaches introduce complications, both in the probabilistic formulation of the ran-

dom walk process, and in terms of deciding what the appropriate scale of analysis should be.

Here we describe a simple, computationally cheap way of extending stochastic denoising to

perform larger-scale smoothing.

The modified method performs denoising in two passes over the input image. The first

pass proceeds exactly as described above, and yields a denoised estimate I∗ at the same

resolution as the original image. To produce a second denoising estimate computed over

larger pixel neighbourhoods we blur and down-sample (by a factor of 2) the input I using

a standard Gaussian kernel with σ = 1. The half-resolution denoised estimate I∗h is then

up-sampled to I∗hu and combined with I∗ using at each pixel the following blending equation:

I f inal(x,y) = α(x,y)I∗(x,y)+ (1−α(x,y))I∗hu(x,y), where α = |∇I∗|. Intuitively, this equa-

tion states that we care about preserving sharp detail wherever the high resolution denoised

estimate contains edge structure. For more uniform image regions, we will use a denoised

estimate computed at a coarser scale.

This extension, though very simple, yields excellent results on heavily corrupted images.

Fig. 5 shows images taken with a standard cellphone camera. The single-pass denoising

estimates, though better than the input, are still fairly noisy. On the other hand, the two-

pass estimate computed using the algorithm described above is significantly better. It shows

greatly reduced noise and preserves sharp edges and structure. This simple, two-pass de-

noising method can easily be extended into a multi-scale algorithm, should it be required to

remove from the image larger correlated groups of noisy pixels.

It is worth noting that extending the algorithm to perform denoising on 3D data should

be relatively straightforward. In its simplest form this would involve random walks defined

over 3×3×3 neighbourhoods centred at each pixel. Motion sequences would require more

complex neighbourhood structures, adapted to the optical flow field. We expect the algorithm

to remain efficient for 3D data since complexity depends on the length of the random walks,

and the size of the neighbourhood contributes only a constant factor. This latter extension

remains a topic of ongoing research.
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6 Conclusion

We have presented a novel algorithm for image denoising based on simulated random walks

on image space. We showed that these random walks produce stable estimates even for few

trials, and that the overall behaviour of the random walks approximates that of more com-

putationally expensive blur kernels. Quantitative evaluation of our algorithm shows that it

consistently outperforms alternate methods representative of the state-of-the-art in image de-

noising, and we provide sample results on real-world applications. We expect stochastic de-

noising will become a useful tool in image processing applications for which noise removal

is important. In addition to this, the benchmark provided here will aid in the evaluation of

other existing and future algorithms for image denoising.
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