
CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Localization

Most automatic systems including robots have to operate in complex environments, and in order to
do that, the first necessary condition is for the robot to figure out their precise location within this
environment. This problem is called localization, and needs to be addressed in a sound and robust
manner.

You may wonder why we don’t simply use a system like GPS to determine the location of a robot.
GPS, at least in the versions available to regular users, is not precise enough. Let’s see why that is.

How GPS works

The principle of operation of GPS is fairly simple – each GPS satiellite emits a signal with
information about the satellite’s position and a timestamp for when the signal was sent. From the
timestamp, a GPS received calculates the time-of-travel from the GPS satellite to the received. Time of
travel can be used to determine the distance to the satellite – the receiver must be somewhere on a
sphere centered at the satellite and whose radius was computed from the time of travel for the satellite’s
signal.

Given a set of 4 GPS satellites, an unambiguous location can be ontained in 3D as shown in the
sequence of images below.

(Images from: https://oceanservice.noaa.gov/education/tutorial_geodesy/geo09_gps.html - Public Domain)

This is the nice theory – however, in practice the problem is incredibly complex and full of places
where unknowns and uncertainties creep into the position computation:

- The orbit of the satellites is an imperfect ellipsoid, affected by gravitational variations as they
move over Earth (which is not a perfect sphere, not does it have a uniformly distributed mass).
Relativistic effects due to height variations during the satallite’s orbit affect the satellite’s clock, which
in turn affects the time-stamp. All of these need to be compensated for as best as possible

- Atmospheric conditions affect the time of travel for the signal. Exact time of travel could be
determined only if the signal was travelling in vacuum, but it’s not. Depending on atmospheric
conditions between the satellite and the received the signal will be delayed in ways that are hard to
compensate.

- Often there is no direct line-of-sight to one or more of the GPS satellites. In cities, for example,
buildings often get in the way and the received gets a signal that has been bounced off buildings and

F. Estrada, 2023

https://oceanservice.noaa.gov/education/tutorial_geodesy/geo09_gps.html

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

other structures. This changes the time-of-travel (again in tiny yet significant ways), and this affects the
distance computation.

- Synchronizing the satellite and received clocks is difficult – the system works only if the received
can compute the time-of-travel accurately, and this requires the satellite clocks and the received clock
to be synchronized. GPS satellites carry incredibly accurate atomic clocks, but GPS receivers don’t
have them. This is another source of uncertainty.

All of these effects need to be accounted for, and compensated for, if we are to obtain an accurate
location fix. Modern GPS receivers do a lot of work and achieve a fairly good location fix when
conditions are good, but even so there is a residual localization error that can be anywhere between a
couple feet and several meters. This level of accuracy is often not sufficient if we aim to have a robot
perform tasks requiring great accuracy, such as navigating around a room, picking up or moving
objects, or keeping a car correctly position within a lane in a highway.

A very thorough reference for how GPS position is computed can be found here:
https://www.telesens.co/2017/07/17/calculating-position-from-raw-gps-data/

There is another reason why we don’t use GPS for robot localization: It doesn’t work indoors.

Robot Localization

This leaves us with the following setup for the task we want to solve:

- Given a map of the environment the robot is operating in (the map is stored in a way that makes
sense to the robot, what exactly it looks like depends on the application, as we will see)

- Use observations from the available sensors on the robot to accurately determine the robot’s
location within the environment

- The robot can perform actions (often this will mean move around, but it could also mean
interacting with the environment in a way that is useful for localization)

- The localization process fully assumes the sensors are noisy, but importantly the sensors’
operation is not location dependent (i.e. they work just the same regardless of where the robot is within
its environment)

- The map is static, this means that the properties of the environment that are useful for
localization aren’t changing or moving over time. Note this doesn’t mean that the environment can’t
contain obstacles or other moving objects, it just means these moving features aren’t noted on the map

At this point, we have to bring in the proper tools to work through this problem – we know that
sensors are noisy, that the components that allow robots to perform actions are also noisy (e.g.
requesting that a robot perform some action will result in a noisy version of this action). Therefore any

F. Estrada, 2023

https://www.telesens.co/2017/07/17/calculating-position-from-raw-gps-data/

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

algorithm we put together to do the localization will have to account for uncertainty, and any proper
framework for dealing with uncertainty will be probabilistic.

This means that we can never be completely sure about a robot’s location (or any other quantity we
are estimating). Rather, we have a probabilistic quantity called belief, that tells us how likely particular
locations (or values for other quantities we are estimating) are. Probabilistic localization is the
framework used for any realistic application involving robots.

In our concrete case, we want an algorithm to estimate

which for any position x on the map of the robot’s environment corresponds to the probability that
the robot is at location x at a specific moment k in time. The reason for specifying a particular instant in
time becomes clear when we see how Bel(xk) is estimated:

The equation above states that our belief that the robot is at location xk (a vector with coordinates)
is given by the probability that the robot is at location xk given all the information we have
accumulated from the moment the robot started the localization process, d0, (a vector with any
measurements and data useful to help the localization process) to the current instant dk.

Important note: In what follows, we will focus on estimating the physical location of a robot so
we assume xk contains only the spatial coordinates of the robot, however, the process is general and in
practice we will be estimating the set of state variables the robot requires for its operation. This may
include the robot’s heading direction, its travelling speed, and any other values the robot needs in order
to carry out its task.

Estimating belief from the equation above quickly becomes too difficult. Information accumulates
over time, and the conditional distribution over possible locations becomes impossible to keep track of.
In order to simplify the belief estimation process, we will make a simplifying assumption. We will
invoke the Markov property to remove all dependence on previous time instants with the exception of
the immediately previous one. This is a reasonable thing to do because if we knew the robot’s position
at time k-1, and we know what action(s) the robot took at that point in time, and we have access to the
sensor measurements for the current time k, then this provides all the information we need in order to
estimate belief for time k at every possible location. This leaves us with:

where ak-1 represents the action or actions the robot took at time instant k-1, and sk is a vector with
all current sensor measurements the robot has access to. This makes the estimation process tractable.

So, to summarize:

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

- The localization process uses a map, sensor measurements, past actions, and previous belief
values to estimate the current likelihood for all possible locations in the map being the corrent position
where the robot is at.

- The process is tractable because we use the Markov assumption to remove dependence on
historical information beyond the immediately previous time instant.

- Because of the noisy nature of robot sensors and robot actions, we expect the probability values
to fluctuate over time. The localization process has to be carried out continuously. Even if we were
quite certain about the robot’s current location, without constantly adjusting for actions taken as well as
accounting for sensor readings, we would quickly lose track of the robot’s position.

In what follows, we will look at two of the major methods for estimating belief under the
conditions set out above. Each of these has specific advantages as well as limitations, so it will be
important to understand that while the underlying process is similar, the specific ways in which they
differ are critical indeciding which of them you will need to implement for a particular sitiation or
problem.

Histogram Localization

Histogram based localization relies on subdividing the map into small (usually uniformly shaped)
regions, typically arranged on a grid. The process estimates belief for each of the grid locations. The
resulting grid with associated probabilities is in effect a histogram (hence the name for this method).
Let’s see how that would work.

Here’s a map of Conwy Castle, let’s imagine we’re implementing a robot that will traverse the
castle grounds picking up any garbage left behind by impolite visitors.

(original image: Wikimedia commons, author: Cadw, license: Open government license)

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Histogram localization begins by setting up a grid of locations over possible places the robot may
be. This is shown below

Notice a few issues right from the start: Typical maps don’t align neatly with artificial grids. Our
grid contains many cells that correspond to locations where the robot can’t physically be. There are also
grid cells that are partly occupied by walls or other obstacles. The practical impact of these issues will
be some waste of computation (for estimating belief over locations the robot can’t possibly be at), and a
limit to the accuracy we can achieve from the localization process. We’ll get back to this later.

The process for estimating the belief values at each grid cell is iterative, and consists of two steps:

- Sensing: carrying out a sensor measurement, and using the sensor measurement to update belief

- Acting: the robot performs an action or actions (consistent with the goals it has to achieve) and
we update beliefs based on the result of these actions.

In essence, we’re breaking the process of computing Bel(xk) into two parts:

the first term accounts for actions, and the second term accounts for sensor readings. Let’s see how
these two steps eventually lead to localization. We will look at a very simple example of a small grid-
world, where the map consists of color-coded locations (this is not as artificial as you may think, as
many robotics localization problems use specially coloured or patterned landmarks) and we can see
how the different steps of the process affect belief values.

Consider the small map shown below, where each grid location has an associated colour

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

There are 4 different colour tiles in the map above, our robot has a sensor that can report the colour
of the tile the robot is currently in, but:

* The sensor is noisy and imperfect – which means that sometimes it reads the wrong colour
 We need to model this – we would normally do this by calibration, that means taking a lot of

 readings on the map at different locations and keeping statistics on how often the sensor reads
 each colour correctly, and how often it reads the wrong colour (possibly for each wrong colour).

 For simplicity, here we will simply assume that the probability the robot reads the correct colour
 is .85, and the probability it reads the wrong colour is therefore .15

* We don’t know where the robot is at the start of the localization process, and it could be
 anywhere. If we have any information regarding the likelihood the robot may start at

 specific locations, then we can and should use that.
 Here we will simply assume there’s a uniform probability the robot will be at any of the grid
 locations in the map.

Given the above, our initial belief values are equal across all the map locations. Since belief is a
probabilistic quantity, we must ensure the sum of beliefs over the map equals 1.0.

There are 35 tile locations in the map, therefore the initial belief at each location is 1.0/35 and the
initial setup for our localization process is as shown below:

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Now recall we have a 2-step localization process. The first step is sensing, so the robot will use its
sensor to determine the colour of the tile it’s on currently and use that to evaluate

which is the probability that we would observe the curren sensor measurements zk at each of the
possible locations in the map.

In our example, let’s assume the robot reads ‘blue’. We update the value at each grid location
using this new piece of information. For tiles that are blue, we multiply the value there by the
probability the sensor read the colour correctly (.85). For any other colour tile, we multiply their
value by the probability the robot read the colour erroneously (.15).

After updating the values in the map, we re-normalize the values so they add up to 1. This is an
essential step that has to be carried out after each sensor/update step.

The resulting values are shown below – note that these are not beliefs yet, as we have yet to
account for the action part of the belief update. Notice that the values at locations that are blue are now
significantly larger than they were before. Similarly, values for tiles that are not blue have become
significantly smaller.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

You may be tempted to simply take repeat measurements, which quickly reduces the uncertainty

due to possible sensor read errors. However, sensor measurements alone will not allow the robot to
determine where it is because of the presence of multiple tiles all with the same colour. The second step
in the localization process is essential in determining localization.

The acting step requires the robot to perform an action that can help the localization process along.
Typically this means moving around the map, exploring its surroundings. The specific action and how
it’s used for localization depends on the map and what the robot can do. But for the example above,
let’s assume our robot can move one unit in any of the directions up, down, left, or right. One or more
of these actions may not be available if the robot is at the border of the map.

For our example, let’s have the robot move one unit to the left. The important question is how
does this modify the values in grid cells?. Assuming the robot always carries out the selected action
perfectly, then wherever the robot currently is, it will be exactly one tile to the left of where it was at
the previous moment. This means values must be displaced one unit to the left.

In this ideal case the action step simply shifts values over the map to reflect the motion of the
robot. This is easy because the robot always moves as expected, we will see in a moment what to do for
a more realistic case in which the robot’s actions are noisy and imprecise. For now, let’s see what
happens when the robot moves one unit to the left.

1) The current values are all shifted one unit to the left, those on the leftmost column drop off.
 One issue here is what to do with the rightmost column. If the robot moves perfectly, there

 is no chance the robot is anywhere along the rightmost column, so we could fill these cells
 with zero. However, in practice it’s useful to use a small non-zero value instead, this is
 simply because in real-world situations, there is always a chance the robot didn’t do what we
 asked. As long as no belief value ever goes to zero, the process can recover from mistakes.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Of course, we need to re-normalize the array after this step. The final belief values (which now
account for both the sensor measurements and the action taken by the robot) are shown below.

Notice that after just one step of the localization process, we have gone from complete uncertainty
about where the robot is to a situation where just a handful of cells have high belief values. The process
is then repeated.

In the sensing step, the robot now reads ‘green’ and the cell values are updated accordingly
depending on whether the cell colour agrees with the sensor measurement or not. After re-
normalization, the resulting values are as shown below.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Now suppose the robot performs the action ‘move up one square’, and then the following sensing
step reads ‘red’. The resulting values after carrying out the appropriate updates and re-normalizing the
array are shown below (notice once more these are not beliefs, as we have yet to carry an action update
for the latest step!).

At this point, there is a single location in the array whose value is singificantly larger than anything
else – the localization process has converged and we can claim the robot is at the top row, in the circled
location.

Keep in mind that it may take fewer or more rounds of localization to converge to a single location
that is much more likely than the rest. This will depend on the map itself and how distinct different
locations are, as well as on the accuracy of the sensor, and the ability of the robot to carry out actions
precisely. You should keep in mind that the localization loop doesn’t stop once it selects a location. As
there is always a chance we have made a mistake due to an unfortunate sequence of bad readings
and/or particularities of the map, the localization process is active as long as the robot is working.
This means that the belief values are always up to date with our most recent sensor measurements and
actions, and if we made a mistake earlier on, the process will eventually sort out the correct location.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Also note that the above process does not depend on having a very precise model for sensor noise
– as long as the sensor reads values close to the correct ones more often than not, and as long as the
sensor update makes the probabilities of cells that agree with sensor values larger by a reasonable
amount, and the beliefs for cells that don’t agree with the sensor smaller by a reasonable amount, the
process will eventually converge.

Having an accurate sensor model and updating probabilities in a more realistic fashion will allow
the process to converge in fewer steps, and with lower likelihood of choosing the wrong location at
some point along the process.

Up to this point, we have assumes that robot actions are perfectly carried out but with real robots,
this is never the case. For most situations, we will need to account for uncertainty in the results of the
action in how we update the belief values in the array.

The Motion Model

Since the action step typically involved the robot moving around exploring its environment, we
need to account for uncertainties in how the robot moves. This is done through a motion model that
specifies the probability that having chosen a specific move to make, the robot will end up at various
possible locations. Just like the sensor model, we can obtain a motion model by having the robot
perform each possible action repeatedly, and collecting data of where it ends up.

To continue our example above, suppose we have collected such information and have determined
the motion model for our little robot is as shown below:

The model above applies when the robot’s action is to move up by one unit, and it tells us that the
robot’s motion is imprecise. The expected result (the robot ends up in the square above the current one)
only happens half the time. It ends up moving diagonally 40% of the time, and with some probability it
actually stays in the same square. Of course the motion model is relative to the direction the robot is
facing, so accounting for the four possible directions of motion, we have

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

The action update to the beliefs in the map now becomes probabilistic, and is given by:

this equation states the following idea: The probability that the robot ends up at location xk (at the
start of step k of the localization process), given that it performed action ak-1 (at the previous
localization step, k-1) is the result of considering all possible locations it could have been at step k-1
that are near x (the locations xk-1 in the neighbourhood N of x), the probability the robot would travel
from each of these locations to x given the motion model for the action it carried out, and the belief
that the robot was at each of these locations in the previous step.

Let’s look at an example on our map from above. Suppose that we have the following belief values
for the map just after the last sensing step, and that the robot’s action was to move left:

suppose we want to update belief for the location circled in the map above. There are 4 possible
locations that the motion model says could have resulted in the robot being at the circled location. It
could have moved from the red cell above and to the right, and moved to the circled location with
probability .2; it could have been at the blue cell immediately to the right, and ended up at the circled
location with probability .5; it could have been at the green cell below and to the right, and moved to
the circled location with probability .2, and it could have already been at the circled location and stayed
there with probability .1.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

The final belief value for this location is therefore (.2 * .005) + (.5 *.005) + (.2 * .027) + (.1 * .027)
= .0116. The corresponding computation has to be carried out for each cell in the map, and once belief
values have been updated they have to be re-normalized, as always. You should spend a moment
considering what the update looks like for the map above, the same action (move left), and for the
locations on the rightmost column of the map.

 Bear in mind that the specific motion model you need to use depends on your particular
localization problem. But just like with the sensor model, the process should be able to handle an
approximate motion model and still converge to the correct location. A better motion model will allow
the model to converge in fewer steps and with less lieklihood of picking the wrong location at some
point in the process.

 Limitations and Practical Considerations

 Histogram based localization is fairly straightforward, but there are a few limitations and practical
considerations that need to be noted.

 Firstly, There is a direct tradeoff between the size of the grid cells used in localization (which
determines the accuracy of our location estimate), and the computational cost of the process. To see
how this may be a problem let’s consider a realistic problem: Using histogram localization to determine
a car’s location within the area of a ciy.

 An estimate of the surface area of the GTA gives a total of 7,125 square kilometers. If the GTA
was a perfectly square region, this would correspond to a square just under 2.7 x 2.7 Km in size. If we
sub-divided this square into cells that are each 1m x 1m, the total number of cells would be 7,290,000.
These cells would all need to be updated at each step of the localization process as per the algorithm
discussed above.

The process would be computationally quite intensive, and given that a car needs to have accurate
location in real-time, we may not be able to handle such a large grid. And this assumes we only need to
determine the car’s location. In practice we will also need to estimate the car’s heading direction, and
its speed (these are all relevant state variables required to allow a self-driving car to operate).

Suppose we discretize the heading direction into 16 bins, and we discretize the velocity of the car
into 100 bins (e.g. for speeds between 20 and 120 KM/h in 1 Km/h increments). This means 7,290,000
x 100 x 16 bins in total = 11,664,000,000.

That is clearly too many to handle in any practical way.

Just like estimating joint probability distributions for multiple variables, performing histogram
localization with multiple state variables for realistic situations becomes impractical very quickly.

Making the bins larger doesn’t help much, by the time we have reduced the size of the problem to
something manageable, our bins will be too big to provide a good estimate of the state variables we
care about.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

One practical way to handle this problem is to perform localization over multiple scales. This
means: start with a grid that has large cells (e.g. 100m x 100m in the example above), once we have
identified a specific cell in this large grid, perform localization within that cell only using the
significantly smaller 1m x 1m cells – and at this point estimate the remaining state variables.

Different sensors and measurements will be needed to perform localization at each scale, and both
the sensor and action updates need to be adjusted accordingly. But it is possible in this way to manage
the computational cost of the process.

A second potential issue with histogram based methods is that real-world spaces often don’t
subdivide cleanly into square cells. This is less of a problem as long as we don’t have significant
portions of the map that are covered by regions the robot can’t actually visit – if such regions exist, the
update process needs to account for them in some way.

With the above considerations in mind, let’s now have a look at an alternate method for
localization that avoids some of the limitations of histogram based localization. It is a powerful and
often used method for estimating, and keeping track of, state variables for a dynamical system.

Particle Filters for Localization

A particle filter is a method for estimating a probability distribution over possible states for a
dynamical system. It is an iterative, sampling-based method, applies to a wide range of problems, and
scales better in terms of computational cost than a comparable histogram based method.

Let’s assume we have a localization problem for which we are attempting to estimate the value of a
set of state variables x. For the example in this section we will assume the state variables we want to
estimate comprise the spatial location of a robot as well as its heading direction. As with histogram-
based methods, we require a map, and we assume our robot has access to a sensor or sensors providing
information that is useful for localization; and that the robot can carry out actions intended to help it
explore the map in order to achieve localization. Consider the setup shown below:

we have a robot somewhere in a room with open areas and walls or obstacles. The robot is
characterized by its position and its heading direction (so 3 state variables for this problem). And it uses
an ultrasonic sensor to measure the distance of nearby walls at various orientations around it (this is
shown as the dashed lines).

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Like all sensors, the ultrasound sensor is noisy and the distances returned are not exact. It also has
a maximum range, beyond which it can’t sense any obstacles.

Particles

A particle filter creates a large number of virtual robots – which we are going to call particles.
These are placed all over the map (on locations that are possible valid positions for the bot). Each
particle is characterized by the same state variables the particle filter is attempting to estimate. So in
this case, each particle will have a position and a heading direction.

Initially these are all random, and the particles are randomly placed over the map.

Each particle will have an associated Bel(x), which will measure the likelihood the particle is
actually at the same location, and has the same heading direction as the real robot. Much like
histogram-based methods, initially the belief values are uniform and the same for all particles.

Running the Particle Filter

The particle filter has three steps that are carried out as part of a loop. These steps are

1) Action
2) Sensing
3) Resampling

 The first two steps are the same as for histogram-based localization.

Action Step

The action step is fairly straightforward, and much simpler than it is for histogram-based
localization. First, the robot chooses an action to perform and carries out this action. The action may be
random, or may form part of a pre-programmed pattern, but in either case the goal at this point is to
explore the environment and accumulate information that will allow the robot to determine its location.

For each particle i, update the state variables as they would be affected by the action performed by
the robot. For instance, suppose the robot’s chosen action is to move forward by 1 meter. Then we
would look at each particle’s current position, and update its location by calculating where it would be
it if moved 1 meter forward along its current heading direction.

Very importantly: The action update must simulate the noise and imperfections in how the robot
performs actions. This means that if, for example, the robot’s action is moving 1m forward, the actual
distance traveled will be close to, but not exactly 1m. Also, the robot will move in a direction that is
close to, but not exactly the current heading direction for the particle.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

We simulate these imperfections by building a motion model (by calibration), or by using a simple
Gaussian noise model. With the Gaussian noise model the process is very simple:

Simulate the action ‘move forward by 1m’ by:

1) Computing a displacement distance as

 which means adding a value randomly drawn from a Gaussian distribution with carefully chosen
 mean and standard deviation. Because it’s Gaussian, the noise value will more often be close to

 zero, but there’s always a chance of getting larger noise amounts.
2) Compute the heading direction as

 which means adding a random value drawn from a Gaussian distribution to the current heading.
 The mean and standard deviation are carefully chosen to approximate the behaviour seen in the
 real robot.
3) Updating the position of particle i by displacing it by the specified distance d along direction θ.

For different actions, the process above would be adjusted accordingly.

Sensing step

At step of the localization process the robot takes a set of sensor readings z. In the case above, this
corresponds to the sonar distances to nearby walls.

These readings will be used to estimate the probability that we would obtain the sensor readings
in z if the robot was located at the same position as particle i.

Here is how this is done in the context of particle filtering. For each particle i,
a) Estimate the distances from particle i to walls around it, using the map. This is ground truth.

b) Compare the ground truth for particle i with the sensor readings from the robot.

c) Compute the probability that any differences are the result of noise in the sensor.

Just as with histogram localization, we need a sensor model to estimate this probability. And just
like with histogram localization, we can obtain this model by calibration. If we don’t have the chance to
perform calibration, there is a general sensor model that works well in many cases.

Gaussian sensor model

A common, generally useful model for sensor noise assumes that noise is Gaussian with zero
mean. A Gaussian probability distribution is given by the equation

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

,

where μ is the mean of the distribution (the location of the center of the curve), and σ is the
standard deviation which controls its width. Do not confuse the x here with our state variables for
particle filtering, this x is just the horizontal axis of our probability distribution. Curves for different
values of the mean and standard deviation are shown below:

(Image: Wikimedia commons, by inductiveload, public domain)

note that the wider the distribution, the ‘shorter’ it is at its centre. Conversely, the narrower the
distribution the ‘taller’ its peak. The area under the curve must be equal to 1 for this to remain a proper
probability density.

With a zero-mean Gaussian, our sensor model states that:

- Error values close to zero are more likely, this is reasonable since we expect a good sensor to
return a value close to the real value.

- Error values away from zero become less likely the farther they are, once more this is
reasonable since we don’t expect a sensor to return values that are arbitrarily far away from reality.

In addition to the zero-mean Gaussian noise assumption, we often also assume that if multiple
sensor readings are available (either from multiple different sensors, or as in the case above, multiple
readings from the same ultrasonic sensor but for different directions) these measurements are
independent – the amount of noise for each measurement does not depent in any way on the remaining
sensor readings.

Putting everything together, we have a collection of ground truth (GT) values for particle i, and a
corresponding collection of sensor values acquired by the robot.

For each pair j of ground-truth and corresponding sensor measurement, we estimate an error value
as errj=GTj–Sensorj. This is simply the difference between the value we would expect the sensor to
read (ground truth) if the robot was exactly at the same location as particle i, and the actual
measurement returned by the sensor.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Now we can evaluate the probability that the observed differences are due to noise (as opposed to
being the result of particle i not being at the same location as the robot):

we evaluate this probability for each particle i and update the belief for particle i as

intuitively, we expect that particles whose ground-truth values agree reasonably well with the
robot’s sensor measurements will have their belief values reduced by a small amount, while particles
whose ground-truth values disagree significantly with the robot’s sensor measurements will have their
belief values greatly reduced.

After the sensing update is completed, we need to re-normalize beliefs to ensure that the sum of
beliefs for all particles adds up to 1 and thus remains a valud probability distribution.

Having completed the first two steps of the process, we have an updated set of particles (their state
variables have changed) with updated beliefs. Consider for a moment the follwing statement:

If we just repeat steps 1 and 2, and we have a large enough set of particles to begin with, there’s
some chance that we will discover one or a small number of particles that are close to where the robot
is, and after a couple of iterations their belief values will be fairly large, while for the rest of the
particles belief values will be small.

However, there is very little chance we will be lucky enough that any of these particles will be
close enough to the robot’s actual position and heading so as to be actually useful for the robot to carry
out its task.

The third step in the particle filter process is intended to produce particles that are better and better
at approximating the robot’s state variables, whatever those may be.

Resampling step

The final step of the partivle filtering loop creates a new set of particles from the current set as
follows:

Given the current set of N particles
Sample a new set of N particles by randomly choosing particles from the current set with

probability proportional to Bel(xi). Given the new set of particles, re-normalize their beliefs so the set
remains a proper probability distribution.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Take a moment to consider what this step is doing:

- Particles whose belief values are large, are likely to be choosen multiple times
- Particles whose belief values are very tiny are unlikely to be chosen, but can be on occasion

Overall, the new set will have multiple copies of particles whose belief values are high relative to
the rest of the set – the resampling process favours choosing particles whose ground-truth is in better
agreement with the robot’s sensor measurements. Thus, the new set of particles contains better
particles. But, many of these are duplicates. How can this be useful?

Let’s go back to the start of the loop – the action step now takes these duplicate particles, and
simulates whatever action was taken by the robot. Because of noise, each of the originally duplicate
particles will end up with slightly different state variables. They won’t be too different from each
other, but they will all be different. As a result of this, some of the updated particles are likely to be
even better matches for the robot’s state variables.

Continuing the process yields sets of particles that progressively get closer to the robot’s correct
location and heading. Given enough iterations, and assuming the initial set of particles had at least one
within a reasonable distance from the initial robot’s position, the process will result in a small cloud of
variables concentrated around the robot’s location, the one with the largest belief should have state
variables that are very close matches to the robot’s actual state.

The sequence below shows how the set of particles evolves toward convergence over a few
iterations of the process

Limitations and Practical Considerations

The process depends on having a sufficiently large number of particles in the initial set. However,
notice that while histogram-based methods grow in computational burden as a function of the size of
the map, or the number of state variables; with particle filters this is not the case. The number of
particles is fixed and all that is required is that there is a reasonable chance that a handful of particles
will be at a location that is similar to where the robot is. The computational cost of the computation is
fixed by the size of the particle set.

Particle filters require some number of iterations to arrive at a good estimate of the robot’s state
variables, this is because convergence relies on the effect of noise on re-sampled particles in order to

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

progressively approximate the robot’s state. This can take time especially if the initial set of particles is
small and the initial particle closest to the robot doesn’t have good agreement with the robot itself.

Environments with symmetry and lacking in distinctive features may cause the filter to arrive at an
incorrect estimate of the robot’s position. Once more the likelihood of this depends on the size of the
initial set of particles, as well as the map’s characteristics. If the particle set converges to a cloud of
similar particles that are all in the wrong place, the particle filter won’t recover.

To alleviate this problem, it is common practice to alter the resampling step so that a fixed
percentage of the new particles (say 5%, less or more depending on the size of the set and the
characteristics of the map) is always drawn uniformly and randomly from all over the map. In this way,
if the particle filter converges to the wrong spot, over time there is a chance that one of the randomly
sampled particles will be in better agreement with the robot and can re-generate the particle set this
time with the correct location.

Finally, it is worth reiterating that the particle filter works well even when we are trying to estimate
multiple state variables, and that particle filters are generally applicable to problems other than
localization, where we require an estimate of the state of a time-changing system of some kind.

The above are by no means the only or the most powerful robot localization methods. There exists
a wide range of approaches both for general localization problems, and for specific tasks/environments.
The choice must always consider the characteristics of the problem, the type of environment the robot
will be working in, the information provided by the map and the sensors, and the presence of possible
obstacles and other moving objects.

F. Estrada, 2023

