
CSC A48 – Introduction to Computer Science - UTSC

CSC A48 – Unit 5 – Graphs and Recursion

1.- Expanding our problem solving toolkit

Up to this point, we have a pretty good handle on how to store, organize, and access data. We
have learned about computational complexity, and how we can use complexity analysis to gain a better
understanding of different problems, and of the algorithms we implement to solve them. We have in our
toolkit a couple of very useful ADTs, and we have spent a good amount of time practicing how and
where to use them.

In this unit, we will add to our toolkit two of the most general and powerful tools for problem
solving in computer science: Graphs, and recursion.

Graphs are used to model all kinds of real-world items, and real world problems, where the key
to understanding the particular problem is the relationship between items in our collection. Recursion
gives us the ability to understand, manipulate, and solve problems whose particular properties make
regular processing with loops and conditionals very difficult. 

Together, graphs and recursion will open the door for you to work on a variety of fascinating
applications in all fields of knowledge. So let’s dive in and find out what we can do with these two
tools!

2.- Graphs

In Computer Science,  graphs are used as a model to represent items of interest,  where the
relationship between items is relevant to the representation of our collection and to a problem we wish
to solve. To understand this, let’s take a look at the type of information we have been working with up
to this point, and the kinds of problems we have been solving with the tools we have acquired up to this
point.

So far, we can work with (possibly very large) collections of data items, these items can be
regular C types, or compound data types which contain multiple fields. However, one key property of
the data we have been working with, and the problems we have been looking at, is that each item is
fundamentally independent of each other.

For  example,  we have  been  working with  restaurant  reviews  –  we can  search  for  specific
restaurants,  find out  which  restaurants  have  a  review score  above a  specific  value,  check out  the
restaurant addresses, and so on. Importantly: Each review is processed independently of the rest, and
the problems we have been solving do not require us to model in any way the possible relationships
between reviews for different restaurants.

However  –  relationships  between  data  items  are  extremely  important! In  the  case  of  our
restaurant reviews for instance, we may want to consider that different locations of the same food chain
are related to each other: They serve basically the same food! So we should expect their scores to be
similar to a large degree. Restaurants offering a particular type of food (e.g. Mexican tacos) are related,
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and comparing their  reviews is  informative.  Restaurants  in  the same part  of  town are also related
(geographically), and this is an additional source of information that we haven’t used thus far: Perhaps
users in a particular part of town are more ‘picky’ and like to give worse reviews regardless of how
good a restaurant is, or perhaps they just enjoy more certain kinds of food. With what we have learned
up to this point, we can’t really begin to answer questions of this type.

Graphs provide us with a way to  model, reason about, and manipulate data items and  the
relationships between them. With graphs, we can ask questions such as ‘what kinds of restaurants do
my friends like?’, ‘what are the best courses people I know take in the 2nd year?’, ‘How good are
movies  directed  by  Martin  Scorcese?’,  and  ‘What  is  the  fastest  route  to  get  from  UTSC  to  the
wonderful pizza place I love best?’

Graphs encode data items, and their relationships or interactions, in a way that allows us to
implement algorithms that explore the structure of the data we are studying, and that allow us to find
meaningful interactions between data items, and to look for interesting patterns in complex data sets.

In Computer Science, graphs are used to represent information in networks of all types:

- Social networks
- Transportation
- Genomics and bioinformatics
- Computer networks and the Internet
- Courses and their pre-requisites

And they are essential for handling problems such as:

- Natural language processing and understanding (translation, answering user questions)
- Image understanding
- Scheduling and optimization of real-world operations (airports, manufacturing, etc.)
- Artificial Intelligence (used in search, game playing, decision making, neural networks)
- Path planning (if you use Waze or Google drive to get to places, those run on graphs!)
- Data modeling and visualization

… and an whole world of other fascinating applications!
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Drawing 1: A handful of examples of applications of graphs

3.- Definition of a Graph

A graph consists of:

- A set of nodes corresponding to data items we are working with. The set of nodes is usually
  called V. In books, lecture notes, and future courses, you may find the term vertex is used
  instead of node. They are the same thing.

- A set of edges which are the connections between nodes, and represent the relationships
  existing between data items in our collection. The set of edges is usually called E.

Together, they define the graph G=(V,E).

A sample of a graph is shown in the picture below
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Figure 1: A graph representing countries in western Europe. Each node corresponds to one country 
(so the set of nodes V contains one node per country, labeled with the country's name). Edges are 
used here to indicate two countries have a shared border (so the set E of edges will contain one 
entry for every shared border between two countries).

The meaning of the nodes and  edges depends on the particular problem we are studying. For
example:

- In a social network, nodes correspond to people, and edges represent the fact that two people
  know each other (are friends, colleagues, etc.).
- For a mapping application, nodes correspond to locations, and edges correspond to streets
  linking locations together. 
- For neural networks, nodes correspond to processing elements (neurons), and edges represent
  the flow of information within the network.

As you can see, graphs are a  very general  way of representing information and relationships
between items. You can build a graph for pretty much any problem you can think of, as long as you can
find some meaningful way in which data items for that particular problem relate to each other.

You have already been working with graphs! Trees, such as BSTs are graphs (where nodes in
the tree are related to each other by parent-child relationships), linked-lists are also graphs (nodes are
related to each other by a predecessor-successor relationship). So in fact, you already have plenty of
experience working with information stored in graphs.

Types of Graphs

There are two general types of graphs we will use widely:

Un-directed graphs: Like the example shown above, where edges between nodes are  shared,
and the relationship between the nodes  goes both ways.  In the example above, if Portugal shares a
border with Spain, it must be true that Spain shares a border with Portugal.
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Directed graphs:  In this type of graph, edges have  a direction, the relationship between the
nodes goes one way. Examples of these are trees like the BSTs you’ve been working with: Edges in
BSTs go from parent to child. If node a is a parent to node b, the reverse can not be true. An example
of a directed graph is shown below:

Figure 2: A sample of a directed graph. This one represents variables used to model an inference problem: An 
observer sees the grass is wet, and is trying to determine the reason why. There are four variables (hence, four 
nodes in V), corresponding to the grass being wet (true/false), it having rained (true/false), sprinklers being on
(true/false), and the sky being cloudy (true/false). Directed edges indicate that the parent variable's value 
affects the value of the child variable, e.g. If we know that rain=true, that will affect the value of wet grass.

What type of graph we use depends on the data we are working with, and the problem we are
trying to solve. 

Important terms to remember related to graphs

- Neighbours: A node v is a neighbour of node u if (for un-directed graphs) there exists an
 edge    joining both nodes. For directed graphs, a node v is an

out-neighbour of node u if there is an edge  from u to v. Conversely,
v is an in-neighbour of u if there is an edge  from v to u.

- Neighbourhood: For un-directed graphs, the neighbourhood of node u is the set of all nodes
       that are neighbours of u. For directed graphs, there is an out-
       neighbourhood and an in-neughbourhood, corresponding to nodes that are
       connected to u by edges leaving u, and nodes which u is connected to by
       edges arriving at u respectively.

- Degree: For un-directed graphs the degree of a node u is the size (number of nodes) in the
     neighbourhood of u. For directed graphs we have an equivalent out-degree, and
     in-degree.

Exercise: For the graph representing the countries of Europe (see the figures above), what is the
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     neighbourhood for the ‘Germany’ node? What is the degree of this node?

Exercise: For the graph above representing the problem of figuring out why the grass is wet,
     what is the out-neighbourhood of the node for ‘Cloudy’? What is the out-degree for

      this node?
     What are the in-neighbourhood, and in-degree for this node?

- Path: A path through a graph is a sequence of consecutive nodes that can be visited by
            following existing edges between each pair of consecutive nodes. For example, in

the graph below, there is a path from Portugal to Germany that visits in sequence
Portugal → Spain → France → Italy → Austria → Germany.
(incidentally, that would probably be an amazing trip to make!)

 

Note: For un-directed graphs, we can travel along edges in either direction. But for
directed graphs, we can only go from node u to node v if an edge exists that goes
from u to v.

- Cycles: For un-directed graphs, a cycle is a path with at least 3 nodes that starts and ends
    at the same node. For directed graphs, a cycle is a path that begins and ends at the
    same node, but in this case the path can have any number of nodes.

A few awesome applications of graphs

1) Network modeling: This includes any kind of network, including the Internet, social
    networks, professional networks, the electricity grid, a city’s network of streets, 
    protein interaction networks, transportation networks, etc. Graphs can be used in such
    networks for: Analysis of structure, simulation, detection of points of failure, route
    planning, relevance scoring, and many other applications. 
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Figure 3: Social network analysis. Each circle is a node representing a person, the colour and size of 
the node indicate how important each node is in the graph - this is related to how well connected the 
node is, and whether its neighbours are themselves important.

2) Document analysis: Representing a collection of documents. These can be text, such as
    articles, books, on-line blogs, tweets, etc.), or any other kind of media such as images,
    music and sound recordings, video, etc. Documents can be linked in a number of ways,
    for instance, they can be linked by source (who generated the document), by type (e.g.
    linking together newspaper articles, separately from book chapters, journal papers, etc.),
    by topic (for instance, linking together all music videos of classical music), or by any other
    property or combination of properties that is relevant to the problem we are studying.
    Once the graph has been created, we can use it to: cluster documents (group them by
    a relevant property), determine relevance (which documents are more commonly accessed
    or referenced), and discover structure in the collection. This forms the basis of

     recommendation systems used to determine what a user is likely to be interested in.

Drawing 2: Top 2500 Wikipedia pages, grouped by similarity of content. Note 
that colour corresponds loosely to topic. Image by Matt Biddulph, Flickr, CC-
SA2.0

3) Numerical simulation: Many applications in Physics, Engineering, Medicine, Weather
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     Analysis, Computer Aided Design, and Computer Graphics rely on numerical simulations
     performed on a mesh decomposition of a surface or volume – that is, nodes are placed
     at pre-defined locations on the surface or inside the volume, and then these nodes are

                 linked to form a mesh. The values of interest for the simulation (e.g. wind speed in a
     weather model for a storm) are computed at each node, and information is propagated
     via the edges linking neighbouring nodes to carry out the desired simulation.

Figure 4: Simulation of the turbulence generated by an A340. A mesh of nodes (not visible in the 
image) distributed over the volume of this simulation forms the basis of the computation. The 
same mesh is used for visualization, by assigning a colour to nodes of interest. Image: Deutsches
Zentrum für Luft und Raumfahrt, Wikimedia Commons, CC-By3.0 

4) Artificial Intelligence. A significant number of important applications in AI (and hence in
    Machine Learning) rely on graphs for representing information and for carrying out relevant
    processing. A very small sample of the kind of problems you can solve with graphs in 
    AI include: path planning and route-finding, constraint satisfaction (scheduling and
    industrial process optimization), game playing (this has serious applications in finance,
    advertising, etc.), inference and decision making under uncertainty, and the current 
    and very promising field of Deep Learning and its applications.
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Figure 5: A path-planning simulation for an autonomous flying vehicle carrying a search and
rescue mission in a forest. Image: Elucidation, Wikimedia Commons, CC-SA3.0

It should be clear to you that graphs have an amazingly wide range of applications, and there is
a variety of courses in computer science and other scientific disciplines in which you can learn as much
as you like about particular problems you are interested in. Here in A48, our goal will be to understand
the fundamental concepts related to storing, manipulating, and using graphs defined over collections of
data. What you learn here will be the basis for later understanding specialized material in almost all
areas of application of computer science.

3.- Representing graphs

There are two main ways of representing graphs (both un-directed and directed). Each has its
own advantages and disadvantages, and the choice of method for any particular application will depend
on how the graph will be used. 

First, the nodes: These correspond to data items in our problem, and can be stored using any of
the data structures we have studied up to this point (e.g. arrays, linked lists, trees, etc.). You know that
in terms of choosing what data structure to use to store your collection, the usual considerations apply!

That leaves the problem of storing the set E of edges for the graph. We need a way to keep track
of which nodes are connected, and in the case of directional graphs, what the direction of each edge is.

The two most common ways of doing this are:

1.- Adjacency list – The adjacency list is an array with one entry per node. The ith entry in the
         array contains a pointer to a linked list that stores the indexes of nodes to
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         which node i is connected. This is illustrated below

Drawing 3: An adjacency list for the European countries graph. There is one entry per node, and each entry points to a 
linked list containing the indexes of the neighbours for that node

Adjacency lists have the advantage of being space efficient – if the graph has a large number of
nodes,  but each node is connected to at  most a few neighbours,  then the  adjacency list stores the
required edge information in a very compact format – without wasting memory. Conversely, common
graph operations such as querying an edge (figuring out whether two nodes are connected) requires list
traversal, which as we know can be slow.

2.- Adjacency Matrix – As the name implies, the adjacency matrix is a 2D array of size N x N,
   where N is the number of nodes in the graph. For un-directed graphs,

     The entry A[i][j] is 1 if nodes i and j are connected, and zero
     otherwise. For directed graphs, entry A[i][j] is set to 1 if there is an

    edge from i to j, and is zero otherwise.

Adjacency matrices have the same advantages and disadvantages of arrays: Edge queries now
have no overhead, unlike linked lists which require list traversal. Adding or deleting edges, and finding
out whether two nodes are connected requires a single access to the matrix. Conversely, they are not
space efficient. Even in the small example above, you can see that the majority of the entries in the
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matrix are zero. For a very large graph, the adjacency matrix will waste a significant amount of space –
and may in fact not fit in memory!

Note: For un-directed graphs the adjacency matrix must be symmetric.

Complexity of fundamental operations on Graphs

The choice of representation we use for the graph (adjacency matrix or adjacency list) will have
implications in terms of the computational cost of a few common graph operations: 

- Edge query: Finding out whether two nodes (u,v) are connected
Adj. List: O(|V|) Adj. Matrix: O(1)

- Inserting a node: Adding a new node to the graph
Adj. List: O(1)* Adj. Matrix: O(|V|2)

- Removing a node: 
Adj. List: O(|E|) Adj. Matrix: O(|V|2)

- Inserting an edge: 
Adj. List: O(1)+ Adj. Matrix: O(1)

- Removing an edge:
Adj. List: O(|V|) Adj. Matrix: O(1)

Notes:
* Assuming there's space in the array of pointers to linked lists of edges, or that
   we are storing these pointers in a linked list
+ Assuming the new edge is inserted at the head of the linked list of edges for a node

The complexity class  O(1) is something we haven't seen before - it  represents an operation
whose computational cost is constant (it doesn't mean it is exactly 1). That means, it does not depend
in any way on N. 

In the results above,  N=|V|, the number of nodes in the graph, and  M=|E| is the number of
edges in the graph. The results above are expected from the way the adjacency list and the adjacency
matrix work, the complexity result for adding a new node to the adjacency matrix is a result of the fact
that the matrix has size |V|*|V|, and the whole matrix has to be re-allocated and copied over with an
extra row and column. 
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Exercise: For the graph shown below

Figure 6: A small directed graph. Image: David W., 
Wikimedia Commons, Public Domain

- Show the adjacency list, use indexes 0 through 6, starting with A at index 0.
- Show the adjacency matrix for the graph.

Note:   Here we have discussed graphs where edges are either there,  or not. The adjacency
matrix has a 1 or a 0 to represent this. More general graph problems may require edges to be weighted,
that is, they have a value attached to them that represents information about the problem (e.g. for a
graph linking city  intersections  with roads,  the edge weight  may represent  the speed limit  on the
corresponding road). The representation is the same for these weighted graphs, except that now the
adjacency matrix has real values for the weights of edges, and zero only when there is no edge. An
adjacency list would have to store the weight of each edge. 

Solving problems with Graphs!

Now that we know how to represent and store a graph, we’re ready to start thinking about the
kinds  of  problems we can  solve  using  graphs.  However,  before  we can  really  explore  interesting
applications of graphs, we first need to study a general problem solving technique that is very strongly
tied to graphs, and to algorithms that process information encoded in graphs: Recursion.

5.- Recursion as a tool for problem solving

The first thing to point out with regard to recursion is that you already know it, and have been
using it even if we didn’t call it by its name at the time!  Recall we made a point of noting that both
linked-lists and  BSTs are graphs. And we just said that recursion is strongly tied to algorithms that
work on graphs.

Well, as it turns out, all the operations we defined on BSTs in the previous section are recursive
by nature. Consider the insertion of a new node into a BST: Start with the root node for the tree, check
if it’s NULL, and if not, decide whether the node should be inserted on the left or right subtree. Then
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recursively insert the node on the correct subtree. We didn’t call it  recursion at the time, but the
process intuitively made sense from looking at the structure of the tree and thinking about how the
insertion process had to work. 

The same applies to  BST search,  deletion,  and tree traversals!  All  of them are recursive in
nature and they are this way because of the structure of the tree – remember we noted that every sub-
tree of a BST is also a BST! 

So you already know of at least one data structure, and the algorithms that we implemented to
make it work, that is recursive in nature, and that has to be as a result, processed recursively.

What we need to do here is acquire a more general picture of what recursion is:  a way of
thinking about problems, a way to implement code that solves particular problems, and a tool for
managing data whose structure is itself recursive.

Examples of Recursive Problems and Data Structures

Graphs are a recursive data structure: Every sub-graph of a graph is also a graph:

Drawing 4: A graph and several possible sub-graphs (in colour), 
each subgraph is itself a graph with its sets G of nodes and E of 
edges.

We had already seen this  property with  BSTs,  but now we know it’s a general property of
graphs. Linked-lists, which are also graphs, are also recursive in nature: Every sub-list of a linked-list is
also a linked-list.

And why is that interesting?

Because we can take advantage of the recursive structure of the graph to solve a seemingly
complex problem by:
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Taking the original input graph
Breaking it up into smaller subgraphs

Breaking those up into even smaller subgraphs
And so on…

Until the subgraphs are so tiny solving the problem is trivial
We use that solution to solve the slightly larger subgraphs

And then the even larger subgraphs
And then even larger subgraphs

Until we have the solution to the original problem!

This general process for working on graphs is an example of recursion, and variations of the
algorithm above are used for path finding, robot planning, scheduling, image pattern detection, and
many other applications. Let’s see an example in  path planning. The setup is as follows:  any map
whether it represents city streets, network routers available within some region, or in the case below, a
little maze, can be represented by a graph with  one node per location, and  edges linking together
locations that are connected. 

In the case of city maps, the nodes can represent street intersections, and the edges can represent
streets  linking intersections  together  (question:  would  this  be  a  directed  graph or  an un-directed
graph?). For computer networks, the nodes would correspond to routers through which network traffic
can flow, and the edges would correspond to data links between routers. In the example below, we have
an 8x8 map, each location has been assigned a node in a graph, and the nodes are connected if the
corresponding map locations are connected (there are no walls in between them).

Drawing 5: A sample of a graph representing a small map. Each node corresponds to a location in the map, edges link 
together locations that are connected (no walls between them), and represent the fact that someone walking around this map
could move from one location to another if the corresponding nodes in the graph are linked.

Problem:  How do we find a path from the mouse to the cheese? In terms of our graph this
means finding a path from the node labeled ‘M’ to the node labeled ‘Ch’. For you, looking at the graph
above, it’s very easy to see the path the mouse should take. For a computer working on a graph this is
not so simple.
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Exercise:  Write a program that uses  loops (no recursion!) to solve the path finding problem
above.

If you spend any time at all solving the exercise above, you’ll quickly realize that using loops
on graphs quickly leads to code that is (at best) long, cumbersome, full of special cases, and that will
not work well on slightly different versions of the problem above. Since graphs are a recursive data
structure  by  nature,  you  should  expect  that  non-recursive  algorithms  working  on  graphs  will  be
cumbersome and difficult to implement, test, and maintain.

Let’s  see what  happens if  we try to  solve the problem above  recursively,  by breaking our
original path-finding problem into smaller (simpler) ones until the solution is trivial.

Our path-finding problem begins with our initial location. In the example above, it’s the node
where the mouse is at. Then, finding the path is just a matter of applying the following process:

find path to cheese:
Ask my neighbours: What is the path from you to cheese

They ask their neighbours: What is the path from you to cheese
They ask their neighbours ….

… until – one of the neighbours-neighbours...neighbours is the cheese!
Now one of the cheese’s neighbour knows where to go

Then a cheese’s neighbour’s neighbour knows where to go
… until, the mouse knows where to go!

Let’s see this working on the graph above:

keep going…
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and going…

we found it! Pass the location back, neighbour to neighbour, until it gets to the mouse!

Notes:  We just carried out a  recursive algorithm! It keeps asking neighbours for information
until  we find one that knows what the answer is, then the information is  passed back.  This is an
essential part of recursive problem solving:
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– The problem is progressively broken down, made smaller, or otherwise simplified
   at each step.
- Then information needed to form the solution is passed back one step at a time, until
   the solution for the original problem is obtained.

We will discuss these two components in more detail. For now, it’s enough to remark that the
process we just carried out is called graph search, and is the foundation of path planning. If you have
ever used Google Maps, or Waze to find your way around, they are solving the same problem, using
slightly more advanced graph search implementations, but fundamentally doing the same thing we did
in the illustrations above. We will come back to graph search later on, and you’ll get to implement it!
Before  then,  let’s  look  at  a  few  more  commonly  found recursive  problems  to  strengthen  your
understanding of what recursion is all about.

Note: If  you’re  curious  about  the  many  applications  of  graphs  in  Artificial  Intelligence,
including more advanced methods for path finding and planning, don’t forget to check the AI course
D84!

Divide-and-Conquer methods

Divide-and-conquer  methods  are  behind  some  of  the  most  powerful  tools  we  can  find  in
computer science – including binary search, quicksort, the Fast Fourier Transform (used extensively in
signal processing and signal analysis),  mergesort  (a sorting algorithm with a guaranteed worst-case-
complexity of O(N Log(N)), and the binary space-partitioning trees for determining object visibility in
computer graphics. 

They are naturally recursive in that by definition they work by splitting a problem into smaller
and  smaller  instances,  applying  to  each  of  these  the  same  algorithm,  until  the  problem is  easily
solvable; then combining solutions for smaller instances of the problem to build the solution to larger
and larger instances all the way back to the original one.

Example:  Mergesort is  a  sorting  algorithm guaranteed  to  sort  an  input  collection  in  O(N
Log(N)) time. The method works as follows (pseudocode):

mergesort(input_array)

if the length of input_array is <= 1, then array is sorted: return input_array 

else
split array into 2 sub-arrays: lower_half, and upper_half
sorted_low = mergesort(lower_half)
sorted_high = mergesort(upper_half)

Merge in sorted order the two sub-arrays sorted_low and sorted_high
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to build the complete sorted_array

return sorted_array

It is likely you will do a full analysis of the complexity of mergesort next year in B63, for now,
you can obtain an intuitive understanding of why it has a complexity of O(N Log(N)) by considering
the following:

- It takes Log2(N) splits to reduce the input array to sub-arrays of size 1 or 0 no copying of
   input data is needed – the splitting can be done by passing indexes into the input array

  indicating the first and last entries in a sub-array.
- Merging in order two sorted collections with N/2 entries is done in N steps. We have to merge
  arrays up to Log2(N) times (for each level of splitting). Hence N Log2(N). Note that this
  step requires setting up a separate array to hold the sorted result as it is being built by the
  merge step.

The above is just a quick-and-dirty overview. As noted, the proper analysis of mergesort is left
for B63, where you will look at the complexity of the algorithm both in terms of time, and in terms of
the storage space it requires.

Computer Graphics

Recursive structures are common in computer graphics:

- Objects composed of parts (e.g. the various parts of a person or animal, plants, buildings)
   are often modeled using tree-structures – hence, graphs: recursive structure.

- The rendering (drawing) process for certain plants like ferns and trees is naturally recursive

- Animation of objects routinely requires us to recursively apply transformations (changing the
   shape, size, orientation, or some other property of the object) to objects and their parts and
   sub parts (for example: To animate an arm, we move the upper arm, then the lower arm moves
   relative to the upper arm, then the hand moves relative to the lower-arm, and so on).

- The most advanced rendering methods (capable of creating movie-quality, photo-realistic
   scenes) are naturally recursive. They rely on tracing the path of light as it bounces from one
   object to another, then another, then another, and so on until the entire path of light from
   a light-emitting object to the camera has been found
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Drawing 6: A real fern (left), a computer model of a fern (center) showing how the fern's parts are 
just smaller versions of the whole shape, and a computer rendering (right) of a tree that uses 
recursive shapes, a tree-based representation, and a recursive rendering algorithm to create a life-
like virtual plant. Images: (left) Pixbay, used with permission, (center) A. M. Campos, Wikimedia 
Commons, public domain, (right) Solkoll, Wikimedia Commons, public domain  

From the above it should be clear that recursion is a fundamental tool in computer graphics. It is
used in some way for almost every component of the process of defining, representing, storing, and
rendering computer generated images. 

Note: To learn more about how photo-realistic computer graphics are generated, check out the
computer graphics course D18.

Programming Languages

If you plan to be a serious software developer, you will need to learn different programming
paradigms. C is based on the imperative programming model – program statements change the value of
data and the state of the program in order to achieve the program’s goal. Many other programming
languages work in basically the same way. 

However, there is a different programming model called functional programming (note that this
doesn’t  have  anything  to  do  with  using  functions!  The  term  has  a  different  meaning  here!).
Functional programming is built on the concept of a program being the result of the evaluation of a set
of mathematical expressions or functions.  Functional  programming languages include  LISP and its
derivatives (Scheme, Racket), as well as Haskell. And they heavily rely on recursion for carrying out
their work.

Note: You can learn about functional programming in the programming languages course, C24. 

File system organization

As a final example of recursive problems and data structures, consider the structure of the file
system in your computer. The information you have there is organized into folders, each of which will
contain multiple items which themselves can be  folders. The structure of the directories in the file
system is in effect a tree (graphs again!), and is recursive. 
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Example: Finding a file matching a particular name in your computer:

findFile(directory, file name)
if a file matching file_name is in directory

return directory
else

for every sub_directory in directory
return findFile(sub_directory, file_name)

In effect, this process travels through the directory structure in your computer, from the top-
level directory (My Computer, if you’re in Windows, ‘/’ in Linux), looking for the file. For any given
directory, if the file is not in that directory it then checks each of the sub directories recursively (and
you should by now understand that this means that for each sub-directory the same process will be
carried out!) until either the file is found, or the entire directory structure in your computer has been
searched.

The recursive structure of the file system is not limited to directories and files. For example, in
Linux, the actual data blocks that make up a file are organized into a tree-structure in an inode (this has
nothing to do with a certain company that sells phones, tablets, and computers):

 

Figure 7: Structure of the data component of a 
Linux EXT2 File System inode. Image: timtjtim, 
Wikimedia Commons, CC-SA4.0 

Note: To understand the principles of organization of files and file-systems, don’t forget to
check the operating systems course, C69.

6.- General Principles of Recursion

By now you should have an intuitive understanding of the following general principles that are
part  of  every recursive problem, and will  therefore form the  basis  of  coming up with a  recursive
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solution to any of these problems:

* The problem itself is complex.
* But it can be broken down into smaller, or simpler versions of itself.
* The same process applies to the original problem, and to the progressively smaller/simpler
   instances of it.
* At some point, the solution to one of the small problems becomes easy to compute, we can
   stop breaking down into smaller problems and simply return the solution.
* The process now goes back building a solution for larger and more complicated subproblems
   until the original problem is solved.

Structure of a Recursive Solution

Because of the properties noted above, we can say that every recursive solution to a problem
will have the following components:

1 - A Base Case: This represents the simplest (trivial) form of the problem being solve, for
     which the answer can be computed and returned without additional recursion.

Examples:
- For strings, the base case often is an empty string, or a string with one char
- For numeric arrays, the base case often is an array with 1 entry, or an empty array
- For graph problems, the base case often involves a graph with a single node, or a
  graph where the node being processed has a specific property (e.g. for mapping
  applications, it could be that the node being processed represents the location 
  we’re looking for)
- For search (on lists, trees, or other data structures) the base case is often having
  reached an empty sub-list, or sub-tree, or having found the item we’re searching for.

Note: As you can see there can be several different base cases for a given problem. You have to
          think about all that apply to your problem – we say ‘often’ in the examples above because
          depending on the problem the base case may be something different. Once again you have
          to figure out what is appropriate given your problem. What is critical is to ensure there
          is a base case, otherwise your recursion will not end!

2 - The Recursive Case: This is the general case, where we split, simplify, or otherwise make
     the problem smaller and closer to the base case. It involves thinking
     about how to break down a given problem, and involves recursively
    calling the function with the smaller sub-problem(s). The recursive
    case implementation is also responsible for re-constructing the solution
    for the original problem from solutions for the smaller, simpler 
    sub-problems.

Examples:
- For strings, the recursive step often breaks the string into chunks. Some problems
  will require taking out a particular character (e.g. the first, or the last one), others
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  will split the string in chunks at a specific point. Either way, the resulting substrings
   are closer to the base case.
- For numeric arrays, the recursive step often splits the array into a pair of sub-arrays,
  some problems split the first or last entry from the rest of the array, others (like
  mergesort) split the array in two. Either way the resulting sub-arrays are closer to the
  base case.
- For graphs, the recursive case will often perform processing on subsets of the graph
  (e.g. in the mapping example – a node will ask their neighbour what the path to the 
  desired location is). Another possibility is that the recursive step may split the graph
  into sub-graphs and process each of them recursively (similarly to how mergesort
  processes an array). Examples of this would be tree traversals. The traversal process
  splits a tree into left and right subsets, and processes these recursively until reaching
  the base case of an empty subtree.
- For search, the recursive step often calls for recursively searching over a subset of the
  data structure where we expect the information we want to be. For example, for BSTs,
  the search process determines which sub-tree the desired item should be in, and 
  recursively searches that subtree. At each step, the remaining sub-tree is closer to the
  base case (either finding the item we want, or reaching an empty subtree).

How to design a recursive solution:

Carefully  consider  your  problem.  Write  down and illustrate an  example  –  e.g.  if  you are
working on arrays, draw a representative sample array with data. 

Then consider: What should the the base case for this problem?
  How many different base cases are there?
  Have you found all of them?

Once you know the base case(s): Look at your example, and ask yourself how you could split
      your problem into sub-problems that will get closer to the

      base case, and whose solution can be used to build the
      solution for the original problem. - this process will give you

     the recursive case.

Important note: There may be several different ways to split a problem for the recursive case.
Choosing an appropriate way to split your problem will make the  recursive case simpler and more
intuitive to implement – and will likely reach the base case in fewer steps. So, consider possible ways
to split the problem and determine which is the better one!

This  requires  a  bit  of  thought,  having  a  written  example  often  helps  by  allowing  you  to
visualize different ways to split your problem until you find the one that works. 

Once you have the  base case and the  recursive case, check that the recursive case is able to
reach a base case in every case. Assuming it does, you can go ahead and implement your solution!
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Example:

Let’s do a complete example of how we take a problem, and come up with a good recursive
solution for it by carefully thinking of what the base case and recursive case should be.

Problem: Sorting an array of integers

  9 | 6 | 3 | 7 | 0 |2 | 8 | 1 | 4 | 5 

This is a very short array, but you know that you should have in the back of your mind the
consideration of the complexity of your solution for very large arrays.

What is the base case?

The base case for sorting arrays is either an empty array, or an array with one value. Both of
these cases are already in sorted order. You can easily come up with examples that show that a 2-entry
array is not in sorted order. 

How about the recursive case?

As noted above, there are many ways in which we could split our problem into sub-problems
that  are  closer  to  the  base  case.  We also said that  depending on the  choice  we will  end up with
simpler/more intuitive solutions, or with more complex solutions. And that the different possibilities
may result in algorithms that are less or more efficient.

Let’s have a look at three different ways we could split the problem of sorting an array, each of
which leads to a different sorting method. We will spend a moment thinking about the complexity of
our sorting process for each of the proposed  recursive cases, and this will help you understand and
remember that you have to think very carefully about what’s the appropriate way to split the problem
you need to solve.

Recursive case 1)

Sort the array by splitting the input into two sub-arrays such that

a) The first entry goes into one sub-array, and all remaining entries in the second sub-array.
b) We then recursively sort each sub-array using recursive case 1) until the base case 
     is reached.

When sub-arrays are sorted, we merge them to build larger sorted arrays.

This is, in effect, a variation of mergesort. The difference is that the splitting of the array does
not give two components of equal size at each step. It will sort the array, the recursive case will reach
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the base case in every instance (can you show this?), and the whole process results in a correctly sorted
array. Are we done? Well… let’s consider the complexity of our proposed solution.

In the sample array we show above, the process works as follows:

 9 | 6 | 3| 7 | 0 | 2 | 8 | 1 | 4 | 5   ←   Input array

 9     6 | 3 | 7 | 0 |2 | 8 | 1 | 4 | 5  ←   First application of recursive case 1)

 9   6    3 | 7 | 0 |2 | 8 | 1 | 4 | 5  ←   Second application of recursive case 1)

 9   6   3    7 | 0 |2 | 8 | 1 | 4 | 5  ←   Third application of recursive case 1)

.

.

.

 9   6   3   7   0   2   8   1   4   5  ←   10th application of recursive case 1)

 9   6   3   7   0   2   8   1   4 | 5  ←   Merge {4} and {5}

 9   6   3   7   0   2   8   1 | 4 | 5  ←   Merge {1} and {4,5}

 9   6   3   7   0   2   1 | 4 | 5 | 8  ←   Merge {8} and {1,4,5}

.

.

.

 0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9   ←   Merge {9} and {0,1,2,3,4,5,6,7,8}

How much work does this take for an array of length N?

- We need N recursive splits to reach the bottom of the recursion (the last call time
   we split the problem into smaller components) no element swapping or comparison is
   needed here so the contribution to the algorithm’s complexity is negligible.
- We then need to merge sub-arrays – For each of N levels of splitting, we need to put a
   total of N elements back into larger, sorted sub-arrays. At each level the total merging
   cost is O(N), and we have to do this N times, so the overall complexity of our
   sorting is O(N2). Not too good… we just re-discovered insertion sort!

Surely we can do better!
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Recursive Case 2)

Sort the input array by splitting the input into two sub-arrays so that:

a) One of the array entries, called pivot is chosen at random
b) Two sub arrays are created. The first one will have all the (still un-sorted) entries less than or
     equal to the pivot. The remaining (un-sorted) entries go to the second sub-array. 
c) Recursively sort the sub-arrays using recursive case 2) until the base case is reached

Once all sub-arrays are sorted, simply put them back together to form the entire sorted array.

This is one version of quicksort, where the choice of pivot is random. Let’s see how it works in
our sample array above:

 9 | 6 | 3 | 7 | 0 | 2 | 8 | 1 | 4 | 5   ←   Input array

 6 | 3 | 0 | 2 | 1 | 4 | 5    9 | 7 | 8   ←   First application of recursive case 2) pivot is 6
sub 1.1    sub 1.2        (sub arrays labeled so we can see what’s going on)

recursively sort sub 1.1 and sub 1.2 – working on sub 1.1

 0 | 2 | 1      3 | 6 | 4 | 5   ←   Second application of recursive case 2) pivot is 2
sub 1.1.1      sub 1.1.2

recursively sort sub 1.1.1 and sub 1.1.2 – working on sub 1.1.1

 0 | 1                        2   ←   Third application of recursive case 2) pivot is 1
sub 1.1.1.1         sub 1.1.1.2

recursively sort sub 1.1.1.1 and sub 1.1.1.2 – working on sub 1.1.1.1

 0                             1   ←   Fourth application of recursive case 2) pivot is 1
sub 1.1.1.1.1         sub 1.1.1.1.2

recursively sort sub 1.1.1.1.1: base case, and sub 1.1.1.1.2: base case - merge

 0 | 1                         2   ←   Back to sub 1.1.1.2  which needs sorting
sorted 1.1.1.1       sub 1.1.1.2

sub 1.1.1.2 is the base case, merge

 0 | 1 | 2                3 | 6 | 4 | 5   ←   Back to sub 1.1.2  which needs sorting ...
sorted 1.1.1            sub 1.1.2
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The process  continues,  taking each sub-array when its  turn comes,  splitting it  according to
recursive case 2) until the base case is reached, and merging the sorted sub arrays into larger sorted
arrays until eventually the entire array is sorted

 0 | 1 | 2 | 3 | 4 | 5 | 6    7 | 8 | 9   ←   Just finished sorting sub 1.2 - merge
      sorted 1.1  sorted 1.2   

 0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9   ←   Done!

As we discussed in the previous unit, quicksort has an average complexity of O(N Log(N)). If
we’re not unlucky with our choice of pivots, each split creates sub arrays that are roughly of equal size.
In that case, we can expect to need approximately Log2(N) splits for the recursion to bottom out with
all sub-arrays at the base case. For each level of splitting, we have to put a total of N elements into their
corresponding sub array, so the cost of the splitting step is O(N Log (N)). The merging step then has to
put sorted sub arrays back together – There are on average Log(N) levels, and at each level, a total of N
elements  must  be  put  into  bigger  sorted  arrays,  this  takes  O(N) time  per  level.  Therefore,  the
complexity of the merging step is on average O(N Log(N)). And the total complexity of  quicksort is
O(N Log(N)) on average.

We also saw that if we’re unlucky with out choice of pivot, the splitting process puts every entry
except for the pivot on one sub-array, and just the pivot in the other. If this happens at every step, the
process will be identical to what we got from recursive case 1) and we’re looking at a complexity of
O(N2). Insertion sort again!

So recursive case 2) is much better than recursive case 1)  ON AVERAGE. But we still need to
worry about the potential for slowdowns with an unlucky input array.

Recursive case 3)

Sort the input array by splitting the input into two sub-arrays such that:

a) Each sub-array has half the entries of the original (if the input has an uneven number of
     entries, one sub-array will have one entry more than the other).

b) Recursively sort these sub arrays using recursive case 3) until the base case is reached.

Sorted sub-arrays are merged to build larger sorted arrays until the original input is sorted.

This is the mergesort algorithm we have discussed in this Unit. Let’s see how it works on our
sample array:

 9 | 6 | 3 | 7 | 0 | 2 | 8 | 1 | 4 | 5   ←   Input array

 9 | 6 | 3 | 7 | 0          2 | 8 | 1 | 4 | 5   ←   First application of recursive case 3) 
      sub 1.1    sub 1.2        (sub arrays labeled so we can see what’s going on)
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recursively sort sub 1.1 and sub 1.2 – working on sub 1.1

 9 | 6 | 3           7 | 0   ←   Second application of recursive case 3)
sub 1.1.1       sub 1.1.2

recursively sort sub 1.1.1 and sub 1.1.2 – working on sub 1.1.1

 9 | 6                        3   ←   Third application of recursive case 3)
sub 1.1.1.1         sub 1.1.1.2

recursively sort sub 1.1.1.1 and sub 1.1.1.2 – working on sub 1.1.1.1

 9                             6   ←   Fourth application of recursive case 3)
sub 1.1.1.1.1         sub 1.1.1.1.2

recursively sort sub 1.1.1.1.1: base case, and sub 1.1.1.1.2: base case - merge

 6 | 9                         3   ←   Back to sub 1.1.1.2  which needs sorting
sorted 1.1.1.1       sub 1.1.1.2

sub 1.1.1.2 is the base case, merge

 3 | 6 | 9                7 | 0   ←   Back to sub 1.1.2  which needs sorting ...
sorted 1.1.1            sub 1.1.2

The process  continues,  taking each sub-array when its  turn comes,  splitting it  according to
recursive case 3) until the base case is reached, and merging the sorted sub arrays into larger sorted
arrays until eventually the entire array is sorted

 0 | 3 | 6 | 7 | 9   1 | 2 | 4 | 5 | 8  ←   Just finished sorting sub 1.2 - merge
      sorted 1.1      sorted 1.2   

 0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9   ←   Done!

As we discussed earlier in this Unit, mergesort has a guaranteed worst case complexity of O(N
Log(N)). So in terms of sorting performance, recursive case 3 gives us the optimal solution!

Notice the following:

- recursive case 1), and recursive case 3) both have very simple splitting procedures.
- recursive case 3) easily beats recursive case 1) in terms of sorting complexity.
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- recursive case 2) has a more complex splitting process, and its complexity is in between the
  other two, depending on the particular input provided to the algorithm.

Conclusion: As you can see, the choice of how to split a problem matters greatly. Depending
on your choice, you may obtain a simpler, more intuitive algorithm, and you may have a significant
difference in complexity. So, it’s important that you always spend a good amount of time and effort
into thinking through the different possible recursive cases for your problem, and then choose the
better one.

Friendly reminder: Do not forget what we discussed in Unit 4. Differences in implementation
for different algorithms matter, in the case above, we concluded that mergesort is better than quicksort
based on the fact that it has a guaranteed complexity of O(N Log(N)) whereas quicksort can be slow if
we’re unlucky. But remember we tested quicksort on a task of sorting multiple arrays with randomly
ordered entries, with array lengths in the hundreds-of-thousands, and we didn’t find it slowed down.

Indeed,  the  documentation  for  the  library  implementations  of  common  sorting  methods
including quicksort and mergesort says the following:

Normally, qsort() is faster than mergesort() is faster than heapsort(). 
Memory availability and pre-existing order in the data can make this
untrue.

Exercise:  Implement  mergesort from our description and examples above.  Test it against the
standard implementation of qsort() (quicksort) from the standard C library, for large input arrays. See
how it compares. 

7.- Implementation considerations for recursive methods

Recursion requires that a function  call itself a (possibly large) number of times. Remember
from all the time we spent looking at the memory model in Unit 2, that every time we call a function,
space has to be reserved for the function’s parameters, variables, and return value. In non-recursive
code,  we don’t  usually  worry  about  it  because  we know that  after  a  function  is  called,  its  work
completed, and a return value obtained, all the space reserved for the function is released.

However, with recursive code this is tricky – all the space reserved will eventually be released,
but not until each recursive call is completed. What that means is  space reserved for function calls
early in the recursive process will hang around until it receives results from the recursive calls it
launched.

To understand this problem, let’s have a look at a short example of a function that sums up an
array of integers recursively (as we’ve noted before, this is not a problem where we would immediately
think of recursion, but it’s simple enough it will help us illustrate how recursion is working!).

The function that sums the array works as follows (pseudocode):
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sum(array, n) : L1
if (n==0) return array[0]; : L2
else return array[n] + sum(array, n-1) : L3

The function takes an input array, and recursively computes the sum of its elements. The base
case is an array with a single entry in which case the sum is simply the value for that element (if we’re
careful, we also need to add a case where the array is empty, in which case the sum is zero). 

The input parameter n is used to indicate the part of the array the function is adding – it starts at
the index of the last element in the array, and with each recursively call, decreases by one. This ensures
that we get closer to the base case. Once the base case is reached, the recursion rebuilds the sum from
the first element back to the last. 

Let’s see how this works:

Step 1 - The first call to the function (from somewhere in your program):

Sum([10,5,3,2,1,8],5)

here, n=5, last entry in the array (the 8), it’s not the base case, so the function 
goes to line 3 (L3) and needs to return array[5] plus the results of a recursive
call with n=4.

Step 2 – Recursive call to Sum() with n=4

Sum([10,5,3,2,1,8],4)

At this point, there are two active calls to Sum(), each with their own value of n. The computer
needs to keep track of both of them. This is done by using a  stack. A stack is nothing more than an
array that has the particular property that we fill it up from the end and work out way backwards – the
end of the array is called the bottom of the stack and the beginning of the array is called the top of the
stack. In our example above, somewhere in memory we will have the following information in the
stack:

 

The second call to Sum() has n=4, which is not the base case, so it needs to return array[4] plus
the result of a recursive call:
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Sum([10,5,3,2,1,8],4)  L3:?

Sum([10,5,3,2,1,8],5)  L3:? First call to Sum() goes to 
the bottom of the stack

Second call to Sum() goes on top

Function call stack
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Step 3 – Recursive call to Sum() with n=3

Sum([10,5,3,2,1,8],3)

This adds another active call to Sum() at the top of the stack

The value of n=3 is still not the base case, so another recursive call is needed. This will continue
until we reach n=0.

Step 4 – Recursive call to Sum() with n=2

Sum([10,5,3,2,1,8],2)

Step 5 – Recursive call to Sum() with n=1

Sum([10,5,3,2,1,8],1)

Step 6 – Recursive call to Sum() with n=0

Sum([10,5,3,2,1,8],0)

At this point, the function call stack will look like this:

Step 7 – The call to Sum() at the top of the stack finds the base case and returns array[0] (which
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Third call to Sum() goes on top
of the other two

Sum([10,5,3,2,1,8],3)  L3:?

Sum([10,5,3,2,1,8],4)  L3:?

Sum([10,5,3,2,1,8],5)  L3:?

Function call stack

Step 6 – this call hits the base
case and can return array[0]Sum([10,5,3,2,1,8],0)-return 10

Sum([10,5,3,2,1,8],1)  L3:?

Sum([10,5,3,2,1,8],2)  L3:?

Sum([10,5,3,2,1,8],3)  L3:?

Sum([10,5,3,2,1,8],4)  L3:?

Sum([10,5,3,2,1,8],5)  L3:?

Function call stack
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has a value of 10).

Step 8 – The next call  now at the top of the stack (with n=1) now received a 10 from its
recursive call, and can return array[1]+10.

The process continues with each call now completing their work and returning a value to the
next one below, until the call to Sum() at the bottom completes and returns the correct sum for the
whole array.

At the end of the process, all the active function calls have been completed and the stack is
empty  again.  The  entire  process  for  reserving  space  in  the  stack  for  each  function  call  is  done
automatically, what you need to keep in mind is that each recursive call will require its own section of
the stack – this means if you have a recursion that requires a very large depth to reach the base case, or
if you have a recursion where each call requires a lot of stack space, you can run intro trouble by
running out of space – a stack overflow. 
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Sum([10,5,3,2,1,8],0)

Sum([10,5,3,2,1,8],1)  L3:?

Sum([10,5,3,2,1,8],2)  L3:?

Sum([10,5,3,2,1,8],3)  L3:?

Sum([10,5,3,2,1,8],4)  L3:?

Sum([10,5,3,2,1,8],5)  L3:?

Function call stack

This function receives 10 from 
the call above, and can now 
return array[1] + 10 = 15

This call returns 10, and it’s 
done so it’s removed from the
stack

Sum([10,5,3,2,1,8],0)

Sum([10,5,3,2,1,8],1)

Sum([10,5,3,2,1,8],2)  L3:?

Sum([10,5,3,2,1,8],3)  L3:?

Sum([10,5,3,2,1,8],4)  L3:?

Sum([10,5,3,2,1,8],5)  L3:?

Function call stack

This function receives 10 from 
the call above, and can now 
return array[2] + 15 = 18

This call returns 15, and it’s 
done so it’s removed from the
stack

Sum([10,5,3,2,1,8],0)

Sum([10,5,3,2,1,8],1)

Sum([10,5,3,2,1,8],2)

Sum([10,5,3,2,1,8],3)

Sum([10,5,3,2,1,8],4)

Sum([10,5,3,2,1,8],5)

Function call stack

 Step 9 -This call returns 18

Step 10 – This call returns 20

Step 11 – This call returns 21

Step 12 – This call returns the
final sum value = 29
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Important concepts to remember:

- The way computers work, memory for functions in a program is stored in a stack.
   A stack is simply an array (in this case, of memory boxes!) with a fixed size, it’s filled from

    the last entry (bottom of the stack), to the first entry (one way to visualize it is like a bucket,
   when you toss something into it, it goes on top of everything else already there).
- The stack grows upward through the boxes reserved for it (as shown in the diagram above)
- The part of the stack reserved for each function call is called a stack frame (in the diagram
   above, each stack frame is shown as a call to the function with corresponding parameters).
- Your code can run out of stack space with recursive functions, if you’re not careful to ensure

    the recursive process reaches the base case in a reasonable number of calls.
- If the code runs out of stack space, it will be terminated (crash, segfault, etc.)
- Every call to the recursive function gets its own reserved space for variables, parameters,
  and return type - therefore the data used for each recursive call is separate from all others,
  and there is no possibility that anything can get overwritten or changed accidentally unless
  you specifically provided pointers so the recursive call can change things outside its stack

   frame.

You should keep the above diagram in mind - it shows that if you're not careful with recursion,
and if you don't write your code keeping in mind how many parameters and variables you actually
need, you can quickly run into memory problems by using up all the stack space reserved for your
program. 

It should also make you think of the overhead caused by reserving all that memory and passing
parameters and return values around during a sequence of recursive calls. Carelessly written recursive
code can be quite inefficient because of all that overhead.

However, if we are smart and write our code properly, we can take advantage of a technique
called tail-recursion, or tail-recursive optimization. 

Tail Recursion

In the example above, the ‘Sum()’ function reconstructs the result we want from the partial sums
returned by recursive calls – the last recursive call (the one that reaches the base case) returns a value,
which then is used to compute and return the next partial sum, which then is used to compute and
return the next partial sum, and so on all the way back to the first call to ‘Sum()’ which computes and
returns the final sum value.

This line of pseudocode takes care of this part:

else return array[n] + sum(array, n-1) : L3

The thing to notice is that once the recursive call to ‘sum()’ returns a value, we still need to
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add array[n] before we can return from the current call.  Because the function still has work to do
after the recursive call is complete, we need to have access to the local variables and parameters for this
function call (which, as we know, are stored in the stack).

However,  we could achieve the same result in a slightly different way. Instead of having the
sum of the array be re-constructed backward from each successive recursive call, we could  pass the
partial sums forward into the recursion – so that the final recursive call (the one that hits the base
case) can compute the final sum value and simply return it!

Let’s have a look at how we could write the sum function in that way:

Sum_TR(array, n, part_sum) : L1
if (n==0) return part_sum+array[0] : L2
else return Sum_TR(array,n-1,part_sum+array[n]) : L3

This version is very similar to our original one, but the difference in line L3 turns out to be quite
significant: 

else return Sum_TR(array,n-1,part_sum+array[n]) : L3

In this version, the function returns the result from the recursive call directly – it doesn’t need
to do any further operation or compute any further value before it can return. Put in a different way,
the recursive call is the last thing the function does before returning a result. We call this form of
recursion Tail Recursion.

Let’s see how this may change things when the function is called:

Step 1: First call to Sum_TR with n=5, part_sum=0

Sum_TR([10,5,3,2,1,8],5,0)

In the stack, this will generate one stack frame for this call with n=5, which is not the base case,
so we have a recursive function call with n=4, and with part_sum = 0 + array[5] = 8:

Step 2: Recursive call to Sum_TR, n=4, part_sum=8

Sum_TR([10,5,3,2,1,8],4,8)

Here’s where something good happens: Because the call from Step 1 has already done all the
work it needs to do, and passed forward a partial sum, its local variables and parameters are no
longer needed and can be removed from the stack! The compiler is designed to recognize this, and the
code generated will not fill up the stack with data for each recursive call.

Instead, each call’s stack frame exists only until the moment when it executes the next recursive
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call, at which point that stack frame is removed. The illustration below shows how this works:

The remaining steps involve:

Step 3: Recursive call with n=3, part_sum=9  (8 + array[4])

Sum_TR([10,5,3,2,1,8],3,9)

Step 4: Recursive call with n=2, part_sum=11  (9 + array[3])

Sum_TR([10,5,3,2,1,8],2,11)

Step 5: Recursive call with n=1, part_sum=14  (11 + array[2])

Sum_TR([10,5,3,2,1,8],1,14)

Step 6: Recursive call with n=0, part_sum=19  (14 + array[1])

Sum_TR([10,5,3,2,1,8],0,19)

This call reaches the base case, and returns the final value, array[0]+part_sum = 29. Notice that
now we don’t have to go back up the stack re-building the solution! it’s already complete the moment
we reach the base case. There never was a set of active function calls in the stack. The only active call
at any time is the call currently being processed.

So, by changing the way we write out recursive function a little bit – in order to pass partial
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Sum_TR([10,5,3,2,1,8],5,0)

Function call stack

This function call does all of
its work before the recursive 
call!

Sum_TR([10,5,3,2,1,8],5,0)

Function call stack

The compiler recognizes this is a
tail-recursive call, and the code
Generated removes this entry from
the stack once we do the 
recursive call in Step 2 

Sum_TR([10,5,3,2,1,8],4,8)

Function call stack

The recursive call now goes to 
the bottom of the stack!

The same thing happens for every
recursive call until we reach
the base case

Sum_TR([10,5,3,2,1,8],0,19)
This call computes and returns
The final sum value

Function call stack
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results forward rather than re-buliding from partial results backward we have achieved the following:

- Our recursive call no longer takes up large amounts of stack space to keep track of all the
   active function calls.
- The result is available as soon as we reach the base case

Because of these two advantages,  tail recursive  functions can handle  inputs that are much
larger and require much deeper recursion to reach the base case,  and  we eliminate (or at least
significantly  reduce)  the  overhead  of  performing  the  recursive  calls  caused  by  all  the  stack
management required by non-tail-recursive calls.

Modern compilers are able to take advantage of recursive functions written in this way, and the
resulting code is as efficient as an equivalent loop. Let’s see how the three ways of implementing the
sum function compare – with loops, with tail-recursive calls, and with non-tail-recursive calls – the
following is the output of a comparison involving an array with 10,000 floating point numbers, and
computing the sum of the array 100,000 times (so we can measure the time accurately, otherwise a
single call to sum is too fast to measure on modern computers!):

./a.out
For loops, sum=4988.303693, time taken=0.805763
Recursion, sum=4988.303693, time taken=1.389484
Tail Recursion, sum=4988.303693, time taken=0.797839

As you can see, the tail-recursive call is as fast as the function that uses a simple for loop! In
terms of memory, it’s equally efficient as well. The bottom line is, when writing recursive code you
want to try to write it so that it is tail-recursive. It pays out in terms of performance, and allows you to
handle much larger problems.

Note:  You  can  learn  a  lot  more  about  recursion,  tail-recursion,  stack  frames,  interesting
applications of recursion, and get a lot of practice in recursive thinking by taking the Programming
Languages course, C24.

Important note: Any problem you can solve with iterations can also be solved with recursion,
and vice-versa. Both of these are general tools for problem solving. The difference will be in how
natural your solution will be, and how easy to implement, maintain, and extend once written. Choosing
the right tool is important.

 
8.- Back to Graphs

We started this Unit by learning about graphs and the kinds of problems we can solve with
them. We said that recursion is a natural tool for working with graphs since graphs are recursive in
nature. Now that we have learned about recursion, let’s go back and solve the path-finding problem
(from Artificial Intelligence) that we described above.
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In the problem above, we have a start location (the mouse), a destination (the cheese), and a
graph that has 8x8=64 different locations. Each of these is represented by a node. We could number the
nodes as follows:

0   1   2   3   4   5   6   7
8   9   10 …
.
.
.
. …  62  63

And we have an adjacency matrix of size 64x64 (it’s too large to copy here!) that as a one at
entry A[i][j], and also at entry A[j][i] if nodes i, and j are connected (there is no wall between them).

The problem we have is:  Find a path,  which consists  of a sequence of connected nodes,
leading from the start node to the destination. 

We already discussed informally what the solution looks like (asking neighbours, who ask their
neighbours, who ask their neighbours…) but at this point we should think about the recursive solution
in a more concrete way, and consider how to formulate the base case and the recursive case for this
problem.

Base case: Consider the following - 

Unless the destination node is a neighbour, we don’t know the path to the destination

With that in mind

The base case is: We have reached the destination node and we can tell its neighbours
     which way to go to get there.

Is that the only base case?

What if we have a graph such that there is no path from the start node to the destination
node (e.g. the cheese and the mouse are separated by walls with no way around)? In that
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 case we can expect at some point to have asked for directions all nodes that can be
    reached from the start node, and we didn’t reach the destination.

So another base case is: There are no nodes left to explore in looking for the
 destination.

Recursive case: The recursive case deals with finding a path from a given node (let’s call it
the current node) to the destination. Because of the requirement that the path consist of a
sequence of connected nodes, the recursive case consists of:

- Removing the current node from the graph (to create a smaller sub-graph)
- Recursively finding a path  from each neighbour of the current node to the destination  

Once a path has been found from  any  of the neighbours, the path from the  current node is
obtained by attaching the current node to the start of the path.

Because the recursive case removes one node from the graph with each recursive call, we are
sure that it will eventually reach one of the two base cases above.

This process will result in the path illustrated earlier:

The  order  in which we check for a path from the neighbours to the destination is important.
Different orderings will result in different search patterns, different nodes being explored, and possibly
also a different path being found. You can learn all about the different exploration strategies (including
optimizations to reduce the computational complexity of the process!) in the AI course D84. For now,
let’s look at the pseudo-code of the simplest strategy – one that is purely recursive and doesn’t require
you to keep additional data structures to keep track of which neighbours remain to be processed for
each recursive call to the procedure. This exploration strategy is called  DFS for  Depth-First Search
and  it  is  a  fundamental  technique  in  graph  search.  DFS  forms  the  basis  of  algorithms  used  for
scheduling and other constrained search problems.
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// Inputs: current node (its index in the graph) 
// destination node (its index in the graph)
// Adjacency matrix (to figure out a node’s neighbours)

DFS(current, destination, A)

if current==destination 
return destination // We got to base case!

else
for each neighbour of current

subpath=DFS(neighbour, destination, A)
if  subpath found

 // prepend current to subpath to build full path
      return  {current →  subpath}

return (nil)   // Second base case, no subpath from current

Even though we were working on a toy problem, the path finding process we discussed above
applies to the general case of finding a path from one node to another through any graph. As such, you
could apply DFS to a grid representing a city map, a graph for a computer network, or any other path
finding problem you can think of!

Exercise (CRUNCHY!):  Implement DFS on a grid such as the one shown above.  You don’t
need to actually create data for nodes in the graph! Since we are not actually doing any information
processing at this point (only finding paths from one node to another by their index in the grid) it is
enough to create an adjacency matrix (for a grid of size m x n the adjacency matrix has a size of mn x
mn). 

Here's a sample adjacency matrix you can use:

int Adj[16][16]={{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     {1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     {0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     {0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
     {1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
     {0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
     {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     {0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
     {0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0},
     {0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0},
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0},
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1},
     {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0};
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The above matrix is for a grid of size 4x4. As we discussed, an entry Adj[i][j] is one if the node
with index i is connected to the node with index j. So for example, in the above matrix, Adj[5][1]=1 so
nodes 5 and 1 are connected.

Complete the diagram below by adding edges between nodes that are connected, according to
the adjacency matrix above.

Now that you know what the grid looks like, implement your DFS code. Test it by finding paths
between different pairs of nodes in the graph and checking that they make sense for the grid we have
(e.g.  the  path  nodes  should  sequentially  go  from  start to  destination and  each  pair  of  nodes  is
connected)

Note: The DFS process includes a step where the path is grown by prepending the current node
to a subpath returned by a recursive call to DFS. This step requires thought. You're expanding a data
structure whose size is not known in advance (you don't know the length of the path you will find). So
think carefully about how to implement this, and remember we have several data structures we can use
at this point which allow you to add data on-demand.

9.- Debugging Recursive Code

Testing and debugging recursive code can be tricky. But with a bit of practice, and if you think
carefully about what your recursion is supposed to be doing, you'll be able to handle any recursive
function.

What you need to understand before you start debugging

- Your base case (review that you have every base case covered, and that they are implemented)
- Your recursive case (review that the splitting is reasonable, and implemented properly)

Understand how the recursive process is supposed to work, so you can determine if it is doing
the right thing once you start tracing.

Tracing your recursive code
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- The tricky part here is that the same function gets called over-and-over-and-over. So you need
   additional information in order to figure out which of the many recursive calls is not doing
   the right thing, and at what point things go wrong.

How can you do this?

a) Expand your recursive function call with an integer variable called 'level' or 'depth', which is
increased by one each time you call the function. For example, with the DFS function above, we
can modify the DFS call to look like this:

DFS(current, destination, Adj, depth)

The first call to DFS will look like this: 

DFS(15, 1, Adj, 0);

(Find a path from node 15 to node 1, with adjacency matrix Adj, initial recursion depth is 0).

Within the DFS code, the recursive calls will look like this:

subpath=DFS(neighbour, destination, Adj, depth+1);

so in effect, every time we recursively call DFS, the depth is increased by one. 

How does this help?

When inspecting the value of variables and parameters within a recursive call, we need to know
at what level in the recursion process we are in. The 'depth' variable tells us this information. So now,
we can either use a debug tool (such as gdb), or we can printf() the variables and parameters we need in
order to debug our code - while also being able to tell which recursion level these variables are from.

Look at the whole picture:
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Recursion creates a stack of function calls, so you need to print variables and parameters for
each of them, and make sure that the data in each level makes sense and is correct given the level
before. This is the part where you have to use your understanding of the recursive process, the base
case, the recursive case, and the problem itself to figure out which part is broken, and how. 

But  you  have  all  the  information  you  need  to  do  this!  If  this  looks  challenging  at  first,
remember:  like everything else we've been doing in this course, it's just a skill you can and will
master with practice. So, practice!

Common problems with recursion:

- It never reaches the base case (you can see the depth variable keeps increasing to unreasonable
   values) - check your recursive case, make sure it's making the problem smaller, and then

    check that the base case(s) have all been identified and implemented.

- It runs out of stack space for recursive calls: It can happen with large problems which require
   very deep sequences of recursive calls. You can use the 'depth' variable to enforce a

    maximum allowed recursion depth. Your recursive call checks the depth value, and if it is
   equal to the maximum allowed recursion depth, it prints a message to let the user know the
   problem is too complex to solve with the available stack memory, and returns (it should 
   return the equivalent to not having found a solution).
   The advantage of doing this is that it prevents your code from crashing

- The recursion doesn't return the correct solution - check that your base case is returning a 
   reasonable result, and then check the process of building a bigger solution from the 
   smaller one.
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Note:  Once you're satisfied that your solution works, you should remove the  'depth' variable
from the recursive function definition (unless you want to use it to enforce a  maximum recursion
depth limit).

That's all for recursion and graphs... for now!  We can promise you that both of these will
show up in many places and contexts in the near and not-so-near future as you advance through your
career. So don't forget what you learned here! For now, here's a few cartoons that make recursive sense!

Drawing 7: XKCD cartoons about recursion. Courtesy of Randall Munroe, xkcd.com

Additional Exercises and Problems

The importance of choosing the right tool - We have claimed that you can implement any algorithm in
either a recursive way or with loops. Choosing the right tool for a job matters. See if you can figure out
how to solve the following problems using the tool indicated with each exercise.

Ex0 - Assume we have a BST that stores unique integer keys. Write the algorithm that performs in-
order BST traversal on this BST and prints the keys (it should print the keys in sorted order). However,
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you  are not allowed to use recursion.  Use only loops to solve this  task.  You can use helper data
structures as needed (hint, somehow you have to keep track of the information the recursion keeps for
you).

Ex1 - Flood-fill - a common operation in paint programs is that of filling a region with colour. This is
called flood-fill because we can think of it as pouring paint into the region, and that paint spreads out
until it reaches the boundary of the region. Let' see how we would do that in a simple black & white
image. 

Drawing 8: Flood-filling a shape - we are supposed to fill with black the 
inside of the shape defined by the black border

For out purposes here, the image is a 2D array of size (500x500), black pixels have a value of 0,
white pixels have a value of 1.

a) Write the algorithm for performing flood fill on figures such as the one above using only
     loops.

b) Write the algorithm for performing flood fill on figures such as the one above using
      recursion.

Ex3 -  Graph distance - One common problem in graph-based applications is finding what subset of
nodes is reachable from a given graph node within a certain number of steps. For example, suppose we
have a graph representing the pre-requisite structure of courses at UofT, and we want to know which
courses have CSCA48 as a pre-requisite, or as a pre-requisite to their pre-requisite. This would require
us to find any nodes that are up to two hops away from CSCA48 in the graph (one hope means moving
from one node to the next via a connecting edge).

Given the adjacency matrix for the graph:

a) Propose an algorithm that determines all nodes within distance 2 of a selected start node
     using only loops.

b) Propose an algorithm that determines all nodes within distance 2 of a selected start node
    using recursion.

Ex4 - In the text above, we studied depth-first search for path-finding in graphs. The order in which
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the neighbours of a node are expanded is relevant. In the graph below, label each node in the order in
which it would be explored by DFS assuming that for each node processed by DFS, the neighbours are
processed recursively in the order top, right, bottom, left.

The first node (the one we originally call DFS for) is marked with an 'S' (for 'start').

Be careful - you need to think about how the recursive calls to DFS will be ordered!

Ex5  -  (Crunchy!) -  DFS is only one possible way to explore a graph. A different method, called
breadth-first search uses a different order of exploration. For DFS, a node's grand-children, and great-
grand-children, and so on, will be explored before all of the node's children are explored. With BFS,
the node's children  are all explored before any grand-children. Then  all of the grand-children are
explored before any great-grand-children, and so on until the entire graph is explored.

BFS is normally implemented using a queue (no need for recursion!). In the space below, try to
come up with the algorithm that explores the graph in BFS order, assuming you have access to a queue
data structure -  it  lets you add items to it (always at the end), and lets you remove items from it
(always from the front). If you want to review how queues work, see the related exercise in Unit 3!

Ex6 – Tail Recursion – Implement the Sum() function discussed in the text using for loops, using non-
tail recursive calls, and using tail-recursive calls. Then compare its performance on arrays of different
size (and see how large an array the plain recursive solution can handle before the stack overflows). 

Ex7 – Tail Recursion – Now that you got practice with tail recursion from Ex6, see if you can figure
out how to implement the classic examples of recursion – computing the  factorial  of a number, and
obtaining the nth Fibonacci number, using tail recursion.

Note: Once more, remember that these two problems are examples of tasks that you would want
to implement with  loops! They are here  only to help you develop the skill of writing tail recursive
code!
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